

I2N-A Test traversal algorithm

Let's take a short look of how the algorithm used for automated setup and
resolution of test dependencies works. It is the core algorithm of our test suite.

*** Please keep in mind that in order to understand the algorithm
you need to understand the graph structure behind it which is
explained in detail in the document accompanying this one.
If you do so then I promise this will be a lot of fun.

Firstly, let's draw a circle for each test node.
Secondly, let's connect each test with an upward arrow to a test it depends on.
Lastly, let's connect each test with a downward arrow to a test depending on it.

Each test is then aware of the arrows that originate from it. No test is aware of the arrows that point to it.
This is important for the implementation of the algorithm where it is simply pointers to other nodes divided as
pointers to parents and pointers to children.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Here we take a few tests interconnected in this way giving them some example names. To
differentiate among repeating tests but acting on different objects (vms), we will append
“.vmX”. The ones that don't have this appended are using multiple vms, e.g.
horde.web_views uses vm1 as well as vm4 which can be seen by the dependencies.

Let's start from deploy_tests.vm1 as our root test node...
//to simplify the default start from an actual root node which is analogical (in the last slides)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

There are three qualities that affect our decision about deploy_tests.vm1:

● Is it setup ready = is the number of parent connections equal to 0
● Is it cleanup ready = is number of child connections equal to 0
● Is it reusable = does it create end states that can be reused so that we don't need to run it each time
and if so was it run at least once so that the states are already available

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

The conclusions are:

● Is it setup ready – True (always true for root state since it doesn't need setup by definition)
● Is it cleanup ready – False (one connection pending so no cleanup yet)
● Is it reusable – that depends on scanning for availability after previous runs, let's say it was run (True)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Moving to the next test node consists of two steps:

1) Push the node that is left behind to a stack of all visited nodes that are not cleanup ready
2) Use this path to the root that the stack represents to determine whether you are moving down or up

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

The direction to determine the next action (moving down or up) as is a matter of a
simple check:

1) If the previous node (in the stack) is one of this node's parents, direction is down
2) If it is one of this node's children, direction is up (inverse traversal looking for missing setup)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

We can see above or even test with the previous condition that the direction is
down, so we continue with the previously showed decision process:

● Is it setup ready – False (there is one arrow to parent, i.e. setup to check for availability)
● Is it cleanup ready – False (two connections pending so other tests wait to use this one)
● Is it reusable – depends on scanning, but let's say it wasn't run (False)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

What is different now it that the node is not setup ready, so we can't run it or
continue down. Instead, we prioritize the setup and reverse the direction to up.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

I picked light orange instead of orange only to remind you that the stack now
contains three nodes (the current path) with repeating deploy_tests.vm1:

deploy_tests.vm1 -> set_provider.vm1 -> deploy_tests.vm1

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Of course we use this to detect the we have reversed direction and it is now up,
so we make a different set of decisions based on the same three criteria:

● If node is not setup ready –> go to its next parent (lowest test count) - inverse DFS
● If node is setup ready –> run it if not reusable or skip it if reusable, pop the stack and remove the
arrow that led to here
● Since deploy_tests.vm1 node is setup ready –> let's observe the second case!

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

So as we just said, three things happen:

1) Run the test, however rather skip it since we said that it is reusable
2) Pop the stack, i.e. go to the last test before this one and make a step backward in the path
3) Remove the arrow from the previous test node to this one (or rather consider it visited)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

What now? Well checking the direction now it seems we are going down, so our
check for these three gives us updated results:

● Is it setup ready – True (there are no arrows to parent, i.e. all setup is available and can be run)
● Is it cleanup ready – False (two connections are still pending so other tests keep waiting)
● Is it reusable – we said it wasn't run (False) so it's time to run it!

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Decisions are as expected – we run the set_provider.vm1 and go to the child with
the lowest count (in the future this could be any other scheduling criterion)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 It's just about to get boring, but not yet. I promise it it will become a rather tedious
process in a few slides ;)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 Checking the conditions tells us what to do next:

● Is it setup ready – False (there are two arrows to parent, so multiple objects have to be prepared)
● Is it cleanup ready – True (no other tests wait and depend on this one, it is a “leaf” test node)
● Is it reusable – as a leaf node, this is expected to leave no end states, i.e. it is not reusable (False)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 The test node not being reusable ever means that no matter how many times we
run it, we should run it again. However, not just yet - just like before we should
inverse the direction and go to the next parent based on count or other priority.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 Inverse direction makes us check only if the node is setup ready. No. So we go to
the next parent based on count (inverse DFS as promised).

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 As this seems to be another root state (not really but for the sake of simplicity yes
yes yes), we repeat the same thing like deploy_tests.vm1 so it should lead to...

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 ...this. Now the vu_setup.vm4 is setup ready so we make another step back
running yet another test (I forgot to say we consider it not reusable).

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 Is horde.web_views setup ready now? Not yet - one more object needs a setup
but this one should be easier, as set_provider was run and left behind an end state
to be reused.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 Since set_provider.vm1 is reusable (True) we skip it. Good but a question here
would be where now? The direction is up, so the three steps apply: run it (done),
remove the arrow (done in next slide), and pop the node. Oh, that should be it then
– we pop the node and go to the previous node, i.e. horde.web_views.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

 Is horde.web_views setup ready now? Finally it is. So we run the test. What after
we run it? Now we get the chance to finally handle cases when the node is
cleanup ready. And how to do it? Well it almost the same like handling the setup
ready case in upward direction, but mirrored for the down direction.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

So as we just said, three things happen:

1) Run the test, we said that already
2) Pop the stack, i.e. go to the last test before this one and make a step backward in the path
3) Remove all arrows from the parent nodes to this one (or rather consider it visited child for all)

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Hold on, we are almost there! We now continue our regular DFS with the next
child which turns to be not setup ready, cleanup ready, and not reusable (leaf).

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

I promised it will become tedious although I am a few slides down that promise.
The setup for this node was reusable/skipped, the inwards arrow was removed
and now we are about to make the three cleanup ready steps again...

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

Finally the set_provider.vm1 node is cleanup ready! As you can see the test is no
longer needed for anybody so this would be the perfect place to perform other
cleanup steps like removing object states, etc. and not just popping.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

The size of the stack has reduced to one... I leave the nodes incinerated for visual
effects. All to show that there is a branch that will never be traversed and it's child
tests never to be run. How can we set it on fire? Well, with a single real root test
node which we skipped here for simplicity. If our current node was that root, it
would have continued down its children, reaching these nodes.

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

As you might have already guessed the exit condition is:

root_node.is_cleanup_ready() == True.

Instead of the classical test-defined “setup” and “cleanup” procedures, it is so
much nicer for a fellow test to just put all its mess in one object state and allow
other to reuse it or simply forget it. This structure is trying to make the development
of each test easier taking care of both parts but also of scheduling of the tests so
that maximum mess is reused :) Happy testing!

deploy_tests.vm4 deploy_tests.vm1

vu_setup.vm4

set_provider.vm1

proxy.plain.basichorde.web_views

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

