
© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

SELinux Reference Policy

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Motivations

 Policies are too difficult to develop / maintain
 no coherent structure
 application policies are closely coupled

 no mechanism for creating 3rd party policies
 Strict policy is not strict enough

 does not meet needs of high security systems
 situation is only getting better slowly

 Targeted policy is not simple enough
 creating new targets is very difficult

 Policy needs to support binary modules

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Issues with Current Policies

 Lacks clear and consistent security goals
 some goals implied, but not rigorously applied
 focused on functionality and preserving legacy behavior
 macros are ambiguous and inconsistent

 often over-privilege for convenience
 Roles and administration poorly addressed

 adding or changing roles is very difficult
 Tight coupling among policy modules

 type and attribute declaration / use are undisciplined
 Result is difficult to write and understand

 both for developers and analysts

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Reference Policy Goals

 Security goals
 self-protection
 assurance
 improved role separation

 Functional goals
 enable application policy development

 including separately distributed applications
 support system evaluation and accreditation
 reduce the policy development complexity

 enable users to make security relevant decisions
 improve readability and comprehensibility

 capture lessons learned
 support source and binary modules

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Approach

 Multi-step, incremental improvement of strict policy
 strict policy contains important information

 result of years of testing and evolution
 preserve most existing conventions (e.g., naming)

 ease conversion and adoption
 Add rigor by restructuring the strict policy

 layering, modularity, abstraction and encapsulation
 required to support later steps

 Iteratively tighten policy
 systematic application of security goals
 create multiple variations of the same application policy

 each with different security / functionality tradeoffs
 Add targeted functionality

 strict and targeted policy from single source
 Use on real systems immediately

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Layering

 Not strict computer science layering
 Group similar modules

 according function in the system
 ordered from lowest to highest abstraction

 Lower layer modules included most system policies
 protect kernel resources
 startup / shutdown the system

 Higher layer modules are included as needed, e.g.,
 mail daemon included on systems that send mail
 X windows included desktops

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Current Layers

 Kernel layer
 protects the basic system and resources

 including kernel image, devices, bootloader
 does not include init

 System layer
 lowest level user-space systems and resource
 included on almost all system
 covers init to multi-user login

 Key services layer
 higher level system services
 included based on system function

 Application layer
 all other modules

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Modularity Definition

 Smallest component in reference policy
 Groups related application policies

 based primarily on similarity of functionality
 includes policy rules and labeling

 Basis for encapsulation and abstraction
 Rough correspondence with RPMs

 practical decision to ease system configuration
 sometimes requires compromises

 Modules can be dependent on other modules
 e.g., locallogin depends on authlogin
 cannot be dependent on modules in higher layers

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Module Examples

 Kernel layer
 kernel
 devices

 System layer
 init
 logging

 Key services layer
 cron
 backup

 Application layer
 apache
 postfix

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Encapsulation and Abstraction

 Encapsulation hides module implementation details
 allows module changes without effecting dependents
 reduces close-coupling of policies

 Abstraction creates higher-level concepts
 allows writers to make security relevant decisions
 three types of macros

 type transformation: e.g., make a type a domain or
file

 access: e.g., read all log files
 template: common policy pattern

 Enforced by conventions
 macros are used to create module ‘interfaces’
 set of clearly defined policy writing rules

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Policy Conventions

 Each module has three components
 private policy: declarations and rules private to a module
 interfaces: macros defining abstract access to module resources
 labeling: file contexts

 Most important policy writing rules
 types and attributes are private to a module

 never referenced outside of the module
 macros never declare types
 available access defined by the module that owns the type

 encoded in interface
 interfaces following clear naming conventions

 module name is prefixed
 consistent verbs describing access: e.g., read, write, modify

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Strict Policy Example

type initrc_t, domain, …;

allow initrc_t domain:process signal_perms;
allow initrc_t random_device_t:chr_file rw_file_perms;
can_setenforce(initrc_t)
allow initrc_t lockfile:dir rw_dir_perms;
allow initrc_t lockfile:file { getattr unlink };
allow initrc_t var_log_t:dir rw_dir_perms;
allow initrc_t logfile:file { read append };

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Example Module Policy

type initrc_t;
domain_make_domain(initrc_t)

kernel_set_selinux_enforcement_mode(initrc_t)
domain_kill_all_domains(initrc_t)
devices_get_random_data(initrc_t)
devices_add_entropy(initrc_t)
files_remove_all_lock_files(initrc_t)
logging_read_all_logs(initrc_t)
logging_append_all_logs(initrc_t)

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Example Module Interface

define(`devices_get_random_data',`
requires_block_template(devices_get_random_data_depend)
allow $1 device_t:dir { getattr search read };
allow $1 random_device_t:chr_file { getattr read ioctl };

')

define(`devices_get_random_data_depend',`
type device_t, random_device_t;
class dir { getattr search read };
class chr_file { getattr read ioctl };

')

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Policy File and Directory Structure

 Preserve top level conventions (e.g., make targets)
 Three files per module

 modulename.te
 declarations
 private policy

 modulename.if
 interfaces

 modulename.fc
 file contexts

 Separate directory for each layer
 all three module files in the layer directory

© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Questions?

