
© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

SELinux Reference Policy



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Motivations

 Policies are too difficult to develop / maintain
 no coherent structure
 application policies are closely coupled

 no mechanism for creating 3rd party policies
 Strict policy is not strict enough

 does not meet needs of high security systems
 situation is only getting better slowly

 Targeted policy is not simple enough
 creating new targets is very difficult

 Policy needs to support binary modules



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Issues with Current Policies

 Lacks clear and consistent security goals
 some goals implied, but not rigorously applied
 focused on functionality and preserving legacy behavior
 macros are ambiguous and inconsistent

 often over-privilege for convenience
 Roles and administration poorly addressed

 adding or changing roles is very difficult
 Tight coupling among policy modules

 type and attribute declaration / use are undisciplined
 Result is difficult to write and understand

 both for developers and analysts



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Reference Policy Goals

 Security goals
 self-protection
 assurance
 improved role separation

 Functional goals
 enable application policy development

 including separately distributed applications
 support system evaluation and accreditation
 reduce the policy development complexity

 enable users to make security relevant decisions
 improve readability and comprehensibility

 capture lessons learned
 support source and binary modules



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Approach

 Multi-step, incremental improvement of strict policy
 strict policy contains important information

 result of years of testing and evolution
 preserve most existing conventions (e.g., naming)

 ease conversion and adoption
 Add rigor by restructuring the strict policy

 layering, modularity, abstraction and encapsulation
 required to support later steps

 Iteratively tighten policy
 systematic application of security goals
 create multiple variations of the same application policy

 each with different security / functionality tradeoffs
 Add targeted functionality

 strict and targeted policy from single source
 Use on real systems immediately



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Layering

 Not strict computer science layering
 Group similar modules

 according function in the system
 ordered from lowest to highest abstraction

 Lower layer modules included most system policies
 protect kernel resources
 startup / shutdown the system

 Higher layer modules are included as needed, e.g.,
 mail daemon included on systems that send mail
 X windows included desktops



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Current Layers

 Kernel layer
 protects the basic system and resources

 including kernel image, devices, bootloader
 does not include init

 System layer
 lowest level user-space systems and resource
 included on almost all system
 covers init to multi-user login

 Key services layer
 higher level system services
 included based on system function

 Application layer
 all other modules



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Modularity Definition

 Smallest component in reference policy
 Groups related application policies

 based primarily on similarity of functionality
 includes policy rules and labeling

 Basis for encapsulation and abstraction
 Rough correspondence with RPMs

 practical decision to ease system configuration
 sometimes requires compromises

 Modules can be dependent on other modules
 e.g., locallogin depends on authlogin
 cannot be dependent on modules in higher layers



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Module Examples

 Kernel layer
 kernel
 devices

 System layer
 init
 logging

 Key services layer
 cron
 backup

 Application layer 
 apache
 postfix



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Encapsulation and Abstraction

 Encapsulation hides module implementation details
 allows module changes without effecting dependents
 reduces close-coupling of policies

 Abstraction creates higher-level concepts
 allows writers to make security relevant decisions
 three types of macros

 type transformation: e.g., make a type a domain or 
file

 access: e.g., read all log files
 template: common policy pattern

 Enforced by conventions
 macros are used to create module ‘interfaces’
 set of clearly defined policy writing rules



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Policy Conventions

 Each module has three components
 private policy: declarations and rules private to a module
 interfaces: macros defining abstract access to module resources
 labeling: file contexts

 Most important policy writing rules
 types and attributes are private to a module

 never referenced outside of the module
 macros never declare types
 available access defined by the module that owns the type

 encoded in interface
 interfaces following clear naming conventions

 module name is prefixed
 consistent verbs describing access: e.g., read, write, modify



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Strict Policy Example

type initrc_t, domain, …;

allow initrc_t domain:process signal_perms;
allow initrc_t random_device_t:chr_file rw_file_perms;
can_setenforce(initrc_t)
allow initrc_t lockfile:dir rw_dir_perms;
allow initrc_t lockfile:file { getattr unlink };
allow initrc_t var_log_t:dir rw_dir_perms;
allow initrc_t logfile:file { read append };



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Example Module Policy

type initrc_t;
domain_make_domain(initrc_t)

kernel_set_selinux_enforcement_mode(initrc_t)
domain_kill_all_domains(initrc_t)
devices_get_random_data(initrc_t)
devices_add_entropy(initrc_t)
files_remove_all_lock_files(initrc_t)
logging_read_all_logs(initrc_t)
logging_append_all_logs(initrc_t)



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Example Module Interface

define(`devices_get_random_data',`
requires_block_template(devices_get_random_data_depend)
allow $1 device_t:dir { getattr search read };
allow $1 random_device_t:chr_file { getattr read ioctl };

')

define(`devices_get_random_data_depend',`
type device_t, random_device_t;
class dir { getattr search read };
class chr_file { getattr read ioctl };

')



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Policy File and Directory Structure

 Preserve top level conventions (e.g., make targets)
 Three files per module

 modulename.te
 declarations
 private policy

 modulename.if
 interfaces

 modulename.fc
 file contexts

 Separate directory for each layer
 all three module files in the layer directory



© 2005 Tresys Technology, LLC (www.tresys.com/selinux, selinux@tresys.com)

Questions?


