
Home

News

Downloads

Documentation

Deployment

Architecture

XML format

Domains

Networks

Network Filtering

Storage

Storage
Encryption

Capabilities

Node Devices

Secrets

Snapshots

Drivers

API reference

Language bindings

Internals

Wiki

FAQ

Bug reports

Network Filters
Goals and background
Concepts

Usage of variables in filters

Element and attribute overview

References to other filers
Filter rules

Supported protocols

MAC (Ethernet)
ARP/RARP
IPv4
IPv6
TCP/UDP/SCTP
ICMP
IGMP, ESP, AH, UDPLITE, 'ALL'
TCP/UDP/SCTP over IPV6
ICMPv6
IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

Command line tools
Example network filters
Writing your own filters

Example custom filter

Limitations

IP Address Detection
VM Migration

This page provides an introduction to libvirt's network filters, their
goals, concepts and XML format.

Goals and background

The goal of the network filtering XML is to enable administrators of
virtualized system to configure and enforce network traffic filtering
rules on virtual machines and manage the parameters of network
traffic that virtual machines are allowed to send or receive. The
network traffic filtering rules are applied on the host when a virtual
machine is started. Since the filtering rules cannot be circumvented
from within the virtual machine, it makes them mandatory from the
point of view of a virtual machine user.

Sponsored by:

 Search

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

1 of 15 05/22/2010 11:28 AM

Network filtering support is available since 0.8.1 (Qemu, KVM)

Concepts

The network traffic filtering subsystem enables configuration of
network traffic filtering rules on individual network interfaces that are
configured for certain types of network configurations. Supported
network types are

network

ethernet -- must be used in bridging mode
bridge

direct -- only protocols mac, arp, ip and ipv6 can be filtered

The interface XML is used to reference a top-level filter. In the
following example, the interface description references the filter clean-
traffic.

 ...
 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'/>
 </interface>
 </devices>
 ...

Network filters are written in XML and may either contain references
to other filters, contain rules for traffic filtering or can hold a
combination of both. The above referenced filter clean-traffic is a filter
that for example only contains references to other filters and no
actual filtering rules. Since references to other filters can be used, a
tree of filters can be built. The clean-traffic filter can be viewed using
the command virsh nwfilter-dumpxml clean-traffic.

As previously mentioned, a single network filter can be referenced by
multiple virtual machines. Since interfaces will typically have individual
parameters associated with their respective traffic filtering rules, the
rules described in a filter XML can be parameterized with variables. In
this case, the variable name is used in the filter XML and the name
and value are provided at the place where the filter is referenced. In
the following example, the interface description has been extended
with the parameter IP and a dotted IP address as value.

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

2 of 15 05/22/2010 11:28 AM

 ...
 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'>
 <parameter name='IP' value='10.0.0.1'/>
 </filterref>
 </interface>
 </devices>
 ...

In this particular example, the clean-traffic network traffic filter will be
instantiated with the IP address parameter 10.0.0.1 and enforce that
the traffic from this interface will always be using 10.0.0.1 as the
source IP address, which is one of the purposes of this particular
filter.

Usage of variables in filters

Two variables names have so far been reserved for usage by the
network traffic filtering subsystem: MAC and IP.

MAC is the MAC address of the network interface. A filtering rule that
references this variable will automatically be instantiated with the
MAC address of the interface. This works without the user having to
explicitly provide the MAC parameter. Even though it is possible to
specify the MAC parameter similar to the IP parameter above, it is
discouraged since libvirt knows what MAC address an interface will be
using.

The parameter IP represents the IP address that the operating
system inside the virtual machine is expected to use on the given
interface. The IP parameter is special in so far as the libvirt daemon
will try to determine the IP address (and thus the IP parameter's
value) that is being used on an interface if the parameter is not
explicitly provided but referenced. For current limitations on IP
address detection, consult the section on limitations on how to use
this feature and what to expect when using it.

The following is the XML description of the network filer no-arp-spoofing.
It serves as an example for a network filter XML referencing the MAC
and IP parameters. This particular filter is referenced by the clean-
traffic filter.

<filter name='no-arp-spoofing' chain='arp'>
 <uuid>f88f1932-debf-4aa1-9fbe-f10d3aa4bc95</uuid>
 <rule action='drop' direction='out' priority='300'>
 <mac match='no' srcmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='out' priority='350'>
 <arp match='no' arpsrcmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='out' priority='400'>
 <arp match='no' arpsrcipaddr='$IP'/>
 </rule>
 <rule action='drop' direction='in' priority='450'>
 <arp opcode='Reply'/>

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

3 of 15 05/22/2010 11:28 AM

 <arp match='no' arpdstmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='in' priority='500'>
 <arp match='no' arpdstipaddr='$IP'/>
 </rule>
 <rule action='accept' direction='inout' priority='600'>
 <arp opcode='Request'/>
 </rule>
 <rule action='accept' direction='inout' priority='650'>
 <arp opcode='Reply'/>
 </rule>
 <rule action='drop' direction='inout' priority='1000'/>
</filter>

Note that referenced variables are always prefixed with the $ (dollar)
sign. The format of the value of a variable must be of the type
expected by the filter attribute in the XML. In the above example, the
IP parameter must hold a dotted IP address in decimal numbers
format. Failure to provide the correct value type will result in the filter
not being instantiatable and will prevent a virtual machine from
starting or the interface from attaching when hotplugging is used.
The types that are expected for each XML attribute are shown below.

Element and attribute overview

The root element required for all network filters is named filter with
two possible attributes. The name attribute provides a unique name of
the given filter. The chain attribute is optional but allows certain filters
to be better organized for more efficient processing by the firewall
subsystem of the underlying host. Currently the system only supports
the chains root, ipv4, ipv6, arp and rarp.

References to other filers

Any filter may hold references to other filters. Individual filters may be
referenced multiple times in a filter tree but references between filters
must not introduce loops (directed acyclic graph).

The following shows the XML of the clean-traffic network filter
referencing several other filters.

<filter name='clean-traffic'>
 <uuid>6ef53069-ba34-94a0-d33d-17751b9b8cb1</uuid>
 <filterref filter='no-mac-spoofing'/>
 <filterref filter='no-ip-spoofing'/>
 <filterref filter='allow-incoming-ipv4'/>
 <filterref filter='no-arp-spoofing'/>
 <filterref filter='no-other-l2-traffic'/>
 <filterref filter='qemu-announce-self'/>
</filter>

To reference another filter, the XML node filterref needs to be
provided inside a filter node. This node must have the attribute
filter whose value contains the name of the filter to be referenced.

New network filters can be defined at any time and may contain
references to network filters that are not known to libvirt, yet.
However, once a virtual machine is started or a network interface
referencing a filter is to be hotplugged, all network filters in the filter

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

4 of 15 05/22/2010 11:28 AM

tree must be available. Otherwise the virtual machine will not start or
the network interface cannot be attached.

Filter rules

The following XML shows a simple example of a network traffic filter
implementing a rule to drop traffic if the IP address (provided through
the value of the variable IP) in an outgoing IP packet is not the
expected one, thus preventing IP address spoofing by the VM.

<filter name='no-ip-spoofing' chain='ipv4'>
 <uuid>fce8ae33-e69e-83bf-262e-30786c1f8072</uuid>
 <rule action='drop' direction='out' priority='500'>
 <ip match='no' srcipaddr='$IP'/>
 </rule>
</filter>

A traffic filtering rule starts with the rule node. This node may contain
up to three attributes

action -- mandatory; must either be drop or accept if the
evaluation of the filtering rule is supposed to drop or accept a
packet
direction -- mandatory; must either be in, out or inout if the rule is
for incoming, outgoing or incoming-and-outgoing traffic
priority -- optional; the priority of the rule controls the order in
which the rule will be instantiated relative to other rules. Rules
with lower value will be instantiated and therefore evaluated
before rules with higher value. Valid values are in the range of
0 to 1000. If this attribute is not provided, the value 500 will
automatically be assigned.

The above example indicates that the traffic of type ip will be
asscociated with the chain 'ipv4' and the rule will have priority 500. If
for example another filter is referenced whose traffic of type ip is also
associated with the chain 'ipv4' then that filter's rules will be ordered
relative to the priority 500 of the shown rule.

A rule may contain a single rule for filtering of traffic. The above
example shows that traffic of type ip is to be filtered.

Supported protocols

The following sections enumerate the list of protocols that are
supported by the network filtering subsystem. The type of traffic a
rule is supposed to filter on is provided in the rule node as a nested
node. Depending on the traffic type a rule is filtering, the attributes
are different. The above example showed the single attribute srcipaddr
that is valid inside the ip traffic filtering node. The following sections
show what attributes are valid and what type of data they are
expecting. The following datatypes are available:

UINT8 : 8 bit integer; range 0-255
UINT16: 16 bit integer; range 0-65535
MAC_ADDR: MAC adrress in dotted decimal format, i.e.,
00:11:22:33:44:55

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

5 of 15 05/22/2010 11:28 AM

MAC_MASK: MAC address mask in MAC address format, i.e.,
FF:FF:FF:FC:00:00
IP_ADDR: IP address in dotted decimal format, i.e., 10.1.2.3
IP_MASK: IP address mask in either dotted decimal format
(255.255.248.0) or CIDR mask (0-32)
IPV6_ADDR: IPv6 address in numbers format, i.e., FFFF::1
IPV6_MASK: IPv6 mask in numbers format (FFFF:FFFF:FC00::)
or CIDR mask (0-128)
STRING: A string

Every attribute except for those of type IP_MASK or IPV6_MASK can
be negated using the match attribute with value no. Multiple negated
attributes may be grouped together. The following XML fragment
shows such an example using abstract attributes.

[...]
 <rule action='drop' direction='in'>
 <protocol match='no' attribute1='value1' attribute2='value2'/>
 <protocol attribute3='value3'/>
 </rule>
[...]

Rules perform a logical AND evaluation on all values of the given
protocol attributes. Thus, if a single attribute's value does not match
the one given in the rule, the whole rule will be skipped during
evaluation. Therefore, in the above example incoming traffic will only
be dropped if the protocol property attribute1 does not match value1
AND the protocol property attribute2 does not match value2 AND the
protocol property attribute3 matches value3.

MAC (Ethernet)

Protocol ID: mac
Note: Rules of this type should go into the root chain.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK
Mask applied to MAC address
of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address
of destination

protocolid
UINT16 (0x600-0xffff),
STRING

Layer 3 protocol ID

Valid Strings for protocolid are: arp, rarp, ipv4, ipv6

Example:

<mac match='no' srcmacaddr='$MAC'/>

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

6 of 15 05/22/2010 11:28 AM

ARP/RARP

Protocol ID: arp or rarp
Note: Rules of this type should either go into the root or arp/rarp chain.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK
Mask applied to MAC address of
sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address of
destination

hwtype UINT16 Hardware type

protocoltype UINT16 Protocol type

opcode
UINT16,
STRING

Opcode

arpsrcmacaddr MAC_ADDR
Source MAC address in ARP/RARP
packet

arpdstmacaddr MAC_ADDR
Destination MAC address in
ARP/RARP packet

arpsrcipaddr IP_ADDR
Source IP address in ARP/RARP
packet

arpdstipaddr IP_ADDR
Destination IP address in ARP/RARP
packet

Valid strings for the Opcode field are: Request, Reply,
Request_Reverse, Reply_Reverse, DRARP_Request, DRARP_Reply,
DRARP_Error, InARP_Request, ARP_NAK

IPv4

Protocol ID: ip Note: Rules of this type should either go into the root
or ipv4 chain.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP address

protocol
UINT8,
STRING

Layer 4 protocol identifier

srcportstart UINT16
Start of range of valid source ports;
requires protocol

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

7 of 15 05/22/2010 11:28 AM

srcportend UINT16
End of range of valid source ports;
requires protocol

dstportstart UINT16
Start of range of valid destination ports;
requires protocol

dstportend UINT16
End of range of valid destination ports;
requires protocol

Valid strings for protocol are: tcp, udp, udplite, esp, ah, icmp, igmp,
sctp

IPv6

Protocol ID: ipv6 Note: Rules of this type should either go into the root
or ipv6 chain.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address of
destination

srcipaddr IPV6_ADDR Source IPv6 address

srcipmask IPV6_MASK Mask applied to source IPv6 address

dstipaddr IPV6_ADDR Destination IPv6 address

dstipmask IPV6_MASK Mask applied to destination IPv6 address

protocol UINT8 Layer 4 protocol identifier

srcportstart UINT16
Start of range of valid source ports;
requires protocol

srcportend UINT16
End of range of valid source ports;
requires protocol

dstportstart UINT16
Start of range of valid destination ports;
requires protocol

dstportend UINT16
End of range of valid destination ports;
requires protocol

Valid strings for protocol are: tcp, udp, udplite, esp, ah, icmpv6, sctp

TCP/UDP/SCTP

Protocol ID: tcp, udp, sctp
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP address

srcipfrom IP_ADDR Start of range of source IP address

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

8 of 15 05/22/2010 11:28 AM

srcipto IP_ADDR End of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP address

dstipto IP_ADDR End of range of destination IP address

srcportstart UINT16 Start of range of valid source ports

srcportend UINT16 End of range of valid source ports

dstportstart UINT16 Start of range of valid destination ports

dstportend UINT16 End of range of valid destination ports

ICMP

Protocol ID: icmp
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP address

srcipfrom IP_ADDR Start of range of source IP address

srcipto IP_ADDR End of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP address

dstipto IP_ADDR End of range of destination IP address

type UINT16 ICMP type

code UINT16 ICMP code

IGMP, ESP, AH, UDPLITE, 'ALL'

Protocol ID: igmp, esp, ah, udplite, all
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK
Mask applied to MAC address of
destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP address

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

9 of 15 05/22/2010 11:28 AM

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP address

srcipfrom IP_ADDR Start of range of source IP address

srcipto IP_ADDR End of range of source IP address

dstipfrom IP_ADDR Start of range of destination IP address

dstipto IP_ADDR End of range of destination IP address

TCP/UDP/SCTP over IPV6

Protocol ID: tcp-ipv6, udp-ipv6, sctp-ipv6
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IPV6_ADDR Source IP address

srcipmask IPV6_MASK Mask applied to source IP address

dstipaddr IPV6_ADDR Destination IP address

dstipmask IPV6_MASK Mask applied to destination IP address

srcipfrom IPV6_ADDR Start of range of source IP address

srcipto IPV6_ADDR End of range of source IP address

dstipfrom IPV6_ADDR Start of range of destination IP address

dstipto IPV6_ADDR End of range of destination IP address

srcportstart UINT16 Start of range of valid source ports

srcportend UINT16 End of range of valid source ports

dstportstart UINT16 Start of range of valid destination ports

dstportend UINT16 End of range of valid destination ports

ICMPv6

Protocol ID: icmpv6
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IPV6_ADDR Source IPv6 address

srcipmask IPV6_MASK Mask applied to source IPv6 address

dstipaddr IPV6_ADDR Destination IPv6 address

dstipmask IPV6_MASK Mask applied to destination IPv6 address

srcipfrom IPV6_ADDR Start of range of source IP address

srcipto IPV6_ADDR End of range of source IP address

dstipfrom IPV6_ADDR Start of range of destination IP address

dstipto IPV6_ADDR End of range of destination IP address

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

10 of 15 05/22/2010 11:28 AM

type UINT16 ICMPv6 type

code UINT16 ICMPv6 code

IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

Protocol ID: igmp-ipv6, esp-ipv6, ah-ipv6, udplite-ipv6, all-ipv6
Note: The chain parameter is ignored for this type of traffic and
should either be omitted or set to root.

Attribute Datatype Semantics

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IPV6_ADDR Source IPv6 address

srcipmask IPV6_MASK Mask applied to source IPv6 address

dstipaddr IPV6_ADDR Destination IPv6 address

dstipmask IPV6_MASK Mask applied to destination IPv6 address

srcipfrom IPV6_ADDR Start of range of source IP address

srcipto IPV6_ADDR End of range of source IP address

dstipfrom IPV6_ADDR Start of range of destination IP address

dstipto IPV6_ADDR End of range of destination IP address

Command line tools

The libvirt command line tool virsh has been extended with life-cycle
support for network filters. All commands related to the network
filtering subsystem start with the prefix nwfilter. The following
commands are available:

nwfilter-list : list UUIDs and names of all network filters
nwfilter-define : define a new network filter or update an
existing one
nwfilter-undefine : delete a network filter given its name; it must
not be currently in use
nwfilter-dumpxml : display a network filter given its name
nwfilter-edit : edit a network filter given its name

Example network filters

The following is a list of example network filters that are automatically
installed with libvirt.

Name Description

no-arp-
spoofing

Prevent a VM from spoofing ARP traffic; this filter only
allows ARP request and reply messages and enforces
that those packets contain the MAC and IP addresses
of the VM.

allow-dhcp
Allow a VM to request an IP address via DHCP (from
any DHCP server)

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

11 of 15 05/22/2010 11:28 AM

allow-
dhcp-server

Allow a VM to request an IP address from a specified
DHCP server. The dotted decimal IP address of the
DHCP server must be provided in a reference to this
filter. The name of the variable must be DHCPSERVER.

no-ip-
spoofing

Prevent a VM from sending of IP packets with a source
IP address different from the one in the packet.

no-ip-
multicast

Prevent a VM from sending IP multicast packets.

clean-traffic
Prevent MAC, IP and ARP spoofing. This filter
references several other filters as building blocks.

Note that most of the above filters are only building blocks and
require a combination with other filters to provide useful network
traffic filtering. The most useful one in the above list is the clean-
traffic filter. This filter itself can for example be combined with the
no-ip-multicast filter to prevent virtual machines from sending IP
multicast traffic on top of the prevention of packet spoofing.

Writing your own filters

Since libvirt only provides a couple of example networking filters, you
may consider writing your own. When planning on doing so there are
a couple of things you may need to know regarding the network
filtering subsystem and how it works internally. Certainly you also
have to know and understand the protocols very well that you want
to be filtering on so that no further traffic than what you want can
pass and that in fact the traffic you want to allow does pass.

The network filtering subsystem is currently only available on Linux
hosts and only works for Qemu and KVM type of virtual machines. On
Linux it builds upon the support for ebtables, iptables and ip6tables and
makes use of their features. From the above list of supported
protocols the following ones are implemented using ebtables:

mac
arp, rarp
ip
ipv6

All other protocols over IPv4 are supported using iptables, those over
IPv6 are implemented using ip6tables.

On a Linux host, all traffic filtering instantiated by libvirt's network filter
subsystem first passes through the filtering support implemented by
ebtables and only then through iptables or ip6tables filters. If a filter
tree has rules with the protocols mac, arp, rarp, ip, or ipv6 ebtables rules
will automatically be instantiated.
The role of the chain attribute in the network filter XML is that internally
a new user-defined ebtables table is created that then for example
receives all arp traffic coming from or going to a virtual machine, if the
chain arp has been specified. Further, a rule is generated in an
interface's root chain that directs all ipv4 traffic into the user-defined
chain. Therefore, all ARP traffic rules should then be placed into
filters specifying this chain. This type of branching into user-define

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

12 of 15 05/22/2010 11:28 AM

tables is only supported with filtering on the ebtables layer.
As an example, it is possible to filter on UDP traffic by source and
destination ports using the ip protocol filter and specifying attributes
for the protocol, source and destination IP addresses and ports of
UDP packets that are to be accepted. This allows early filtering of
UDP traffic with ebtables. However, once an IP or IPv6 packet, such
as a UDP packet, has passed the ebtables layer and there is at least
one rule in a filter tree that instantiates iptables or ip6tables rules, a
rule to let the UDP packet pass will also be necessary to be provided
for those filtering layers. This can be achieved with a rule containing
an approriate udp or udp-ipv6 traffic filtering node.

Example custom filter

As an example we want to now build a filter that fulfills the following
list of requirements:

prevents a VM's interface from MAC, IP and ARP spoofing
opens only TCP ports 22 and 80 of a VM's interface
allows the VM to send ping traffic from an interface but no let
the VM be pinged on the interface

The requirement to prevent spoofing is fulfilled by the existing clean-
traffic network filter, thus we will reference this filter from our custom
filter.
To enable traffic for TCP ports 22 and 80 we will add 2 rules to
enable this type of traffic. To allow the VM to send ping traffic we will
add a rule for ICMP traffic. For simplicity reasons we allow general
ICMP traffic to be initated from the VM, not just ICMP echo request
and response messages. To then disallow all other traffic to reach or
be initated by the VM we will then need to add a rule that drops all
other traffic. Assuming our VM is called test and the interface we
want to associate our filter with is called eth0, we name our filter
test-eth0. The result of these considerations is the following network
filter XML:

<filter name='test-eth0'>
 <!-- reference the clean traffic filter preventing
 MAC, IP and ARP spoofing. By not providing
 and IP address parameter libvirt will detect the
 IP address the VM is using. -->
 <filterref filter='clean-traffic'/>

 <!-- enable TCP ports 22 (ssh) and 80 (http) to be reachable -->
 <rule action='accept' direction='in'>
 <tcp dstportstart='22'/>
 </rule>

 <rule action='accept' direction='in'>
 <tcp dstportstart='80'/>
 </rule>

 <!-- enable general ICMP traffic to be initiated by the VM;
 this includes ping traffic -->
 <rule action='accept' direction='out'>
 <icmp/>
 </rule>

 <!-- drop all other traffic -->
 <rule action='drop' direction='inout'>

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

13 of 15 05/22/2010 11:28 AM

 <all/>
 </rule>

</filter>

Note that none of the rules in the above XML contain the IP address
of the VM as either source or destination address, yet the filtering of
the traffic works correctly. The reason is that the evaluation of the
rules internally happens on a per-interface basis and the rules are
evaluated based on the knowledge about which (tap) interface has
sent or will receive the packet rather than what their source or
destination IP address may be.

An XML fragment for a possible network interface description inside
the domain XML of the test VM could then look like this:

 [...]
 <interface type='bridge'>
 <source bridge='mybridge'/>
 <filterref filter='test-eth0'/>
 </interface>
 [...]

To more strictly control the ICMP traffic and enforce that only ICMP
echo requests can be sent from the VM and only ICMP echo
responses be received by the VM, the above ICMP rule can be
replaced with the following two rules:

 <!-- enable outgoing ICMP echo requests-->
 <rule action='accept' direction='out'>
 <icmp type='8'/>
 </rule>

 <!-- enable incoming ICMP echo replies-->
 <rule action='accept' direction='in'>
 <icmp type='0'/>
 </rule>

Limitations

The following sections list (current) limitations of the network filtering
subsystem.

IP Address Detection

In case a network filter references the variable IP and no variable
was defined in any higher layer references to the filter, IP address
detection will automatically be started when the filter is to be
instantiated (VM start, interface hotplug event). Only IPv4 addresses
can be detected and only a single IP address legitimately in use by a
VM on a single interface will be detected. In case a VM was to use
multiple IP address on a single interface (IP aliasing), the IP
addresses would have to be provided explicitly either in the network
filter itself or as variables used in attributes' values. These variables
must then be defined in a higher level reference to the filter and each
assigned the value of the IP address that the VM is expected to be
using. Different IP addresses in use by multiple interfaces of a VM

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

14 of 15 05/22/2010 11:28 AM

(one IP address each) will be independently detected.

Once a VM's IP address has been detected, its IP network traffic may
be locked to that address, if for example IP address spoofing is
prevented by one of its filters. In that case the user of the VM will not
be able to change the IP address on the interface inside the VM,
which would be considered IP address spoofing.

In case a VM is resumed after suspension or migrated, IP address
detection will be restarted.

VM Migration

VM migration is only supported if the whole filter tree that is
referenced by a virtual machine's top level filter is also available on
the target host. The network filter clean-traffic for example should be
available on all libvirt installations of version 0.8.1 or later and thus
enable migration of VMs that for example reference this filter. All
other custom filters must be migrated using higher layer software. It is
outside the scope of libvirt to ensure that referenced filters on the
source system are equivalent to those on the target system and vice
versa.

Migration must occurr between libvirt insallations of version 0.8.1 or
later in order not to loose the network traffic filters associated with an
interface.

libvirt: Network Filters file:///root/tmp/libvirt-acl/docs/formatnwfilter.html

15 of 15 05/22/2010 11:28 AM

