DMTF

digtributed management task force, inc,

1

2 Document Number: DSP0243
3 Date: 2008-09-04
4 Version: 1.0.0d

s Open Virtualization Format Specification

6 Document Type: Specification
7 Document Status: Preliminary Standard

8 Document Language: E

10

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

Open Virtualization Format Specification DSP0243

Copyright notice
Copyright © 2008 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF
specifications may be revised from time to time, the particular version and release date should always be
noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

2 Version 1.0.0d

29

30
31
32
33

34
35

36
37

38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65

66
67
68

69
70
71
72

DSP0243 Open Virtualization Format Specification

CONTENTS
o1 =1Y 0] (o ISP SPPPRPPPPRY 5
[T £ [¥Te3 1 o] o HOSR OO PUUPPR RPN 6
1 o 0] o L= OSSPSR PUPRPRPRPRPR 7
A N[0 ¢ F= LAV B R L=y (=T (Y o= 7
% N Y o] o] (0 1Y /=To I 2 (] (=T (=T Tt SRR 7
A O i LT gl =T (=T =T (oY SRR PRRRRRRRRRPPPRPPIRS 8
I =110 ER= T To I BT {10110 U 8
4 Symbols and ADDreviated TeIMS e e e e e b e e e e e e anes 10
I O AV e - Tor 1€ To [PP P VPP PP PR 10
5.1 OVF PACKAgE SIIUCTUIEttt ettt e e e e e sttt e e e e e e e e s s nbnbeeeaaaeeeanes 10
5.2 VirtUAI DiSK FOIMALS....uuviiiii ittt e e ettt e e e e e e e e e e et s e e e e e eess b e eeeeseesressanas 12
5.3 Distribution @s @ SINGIE FlEeeii it 12
5.4 DiStribution @S @ St Of FIlEScooiiiiiiiiiiiiiiiieeieeeeeeeeeeee et be e ba b b bebebabababebererareres 13
LI @ LV ol B T Yol 1o o) PSP UPP PPN 13
T ENVEIOPE ElEMENT .. e 13
% R o 1 Lo = LY =T =Y o[l E PR RRRRRPPPPPPPRt 15
A o 1 41 (=Y 1 = T o P 16
A T 4 (= 0 71 o 11 PPPERRR 16
A @70 o 4] = 4] o1 1 2 USRS PPEPPR 17
8 Virtual Hardware DESCHPIION.ciceieeieiee e e e e et e e e e e s st e e e e e s e st e e e e e e e e s sssnn e eeeeeeeseannntaneeeeennnnes 17
8.1 VirtUAIHAIAWAIE SECLONeeveviiieerirerererererererererererererererererereae—ererererarererarerarararararrrararrrrrarararares 17
S T 4 (= 0 71 o1 PP 18
8.3 Virtual Hardware EIBMENTScovuiiiiii ettt e e e e e e e e e e e e e e st e e e e e e eessabanas 19
8.4 RANQJES ON EIBMENTS....ci i ittt e e e e st e e e e e e s e ssnteeeeeeeaeeessnnsrnaneeeeeeeennes 21
L I 0o T (-l Y =) = o F= L= BT =T 1[0 1, 23
Lo TN R B 111 Y=Y 1o o R PRRRPPPUPPPPPRt 24
e T 1= o] ¢ S Y= T o 1] o PR 25
1 TG T = L= TY o 1W] (of=Y 2N [[oTor= Y i o] SY=Tox 1o o WP 25
1o I N aTaTo) = 11 0] 1 IS T=Tex 1 o] o [RN 26
1o T T = (o [0 (8o £ =Tox 1 o] o OO UPPPPR 26
o IS T U | F= 1T od 10] PPN PPPPPPPPR 29
S A 1= 1 ¢ (1] 01T =T o1 1o] PP PRPPPPTRN 29
LSRRI B1=T0][0)Y 4 01T a1 (@] o] 1To] R T=T ot o) o [P PPERPRS 30
9.9 OperatiNngSYStEMSECHONuuiiiiiiie e e e e e s e e s e e e e e e s e seate b e e et eaeesssnrrraeeeaaeeeaanns 32
o T O 0 1S =1 | R Y=Y ox 1 o] o PR PRPRRPPPPPPPPPPRt 33
O T o (=T g PN (o T aE= 1 4= 1o o PRSP UPRRSPPRPPPRS 33
11 OV ENVIFONMENTottt et et e e e e ettt e e e e e e eae b e e eeeesee s b st teeeesessstansaaeaesersrrsraanaaaaaseees 35
11.1 ENVIrONMENT DOCUMENT ...uuuuiii et e ettt e e e e e et et e e e e e e e e e bttt eeeeeeeessbaaaeeeaeseesbasanaseeeseesrnes 35
N I - 101 oo S PP PP PPPPPPPPPP 36
ANNEX A (informative) Symbols and CONVENLIONScoiiiiiiiiiiiiiiee et a e 37
ANNEX B (informative) CRANGE LOG........ouutiieiiiiiieiiiiie ettt ettt sttt ettt st e s ssbee e e e sbbn e e e s snbe e e snnnees 38
ANNEX C (NOrmMatiVe) OV XSD ...uuiiiiiieeiiiiiiiiieiie e e s sttt e e e s e s sttt e e e e e e s saaaaaeeeaaaeesssnnnsbaneeeeeeeanstenneeeees 39

Version 1.0.0d 3

73

74
75
76
77
78
79
80

Open Virtualization Format Specification DSP0243

Tables

Table 1 — XML NameSPACE PrefiXESccuuuuiiiieiei ittt ie et e e s s e e e e e e s st e e e e e e e s e nnnnraaeeeeeennnes 13
Table 2 — Actions for Child Elements with ovF:required AtrbUte............oooiiiiiii e 19
Table 3 — HOStRESOUICE EIEMENT.......ooiiiiiiii ittt e e st e e et e e e sbb e e e e snbeeeesnbeeeeeans 20
Table 4 — Elements for Virtual Devices and CONIOIEIScuviiiiiiiiii i 21
R o Ll o o] o =T gV 1Y o= TP UUPUPPRRTTN 28
Table 6 — Property QUAIITIEISooo ittt e st e e s e e e e s sabneeeeae 29

4 Version 1.0.0d

81

82
83

84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

DSP0243

Foreword

Open Virtualization Format Specification

The Open Virtualization Format Specification (DSP0243) was prepared by the DMTF System

Virtualization, Partitioning, and Clustering Working Group.

This specification has been developed as a result of joint work with many individuals and teams,

including:
[]

Simon Crosby, XenSource

Ron Doyle, IBM

Michael Gionfriddo, Sun Microsystems
Steffen Grarup, VMware (Co-Editor)
Steve Hand, Symantec

Mark Hapner, Sun Microsystems
Daniel Hiltgen, VMware

Michael Johanssen, IBM

Lawrence J. Lamers, VMware (Chair)
Fumio Machida, NEC Corporation
Andreas Maier, IBM

Ewan Mellor, XenSource

John Parchem, Microsoft

Shishir Pardikar, XenSource

Stephen J. Schmidt, IBM

René W. Schmidt, VMware (Co-Editor)
Andrew Warfield, XenSource

Mark D. Weitzel, IBM

John Wilson, Dell

Version 1

.0.0d

105

106
107
108

109

110
111

112

113
114
115
116

117

118
119

120

121
122
123
124

125

126
127

128

129
130
131

132

133
134
135

136

137
138

139
140

141

Open Virtualization Format Specification DSP0243

Introduction

The Open Virtualization Format (OVF) Specification describes an open, secure, portable, efficient and
extensible format for the packaging and distribution of software to be run in virtual machines. The key
properties of the format are as follows:

Optimized for distribution

OVF supports content verification and integrity checking based on industry-standard public key
infrastructure, and it provides a basic scheme for management of software licensing.

Optimized for a simple, automated user experience

OVF supports validation of the entire package and each virtual machine or metadata
component of the OVF during the installation phases of the virtual machine (VM) lifecycle
management process. It also packages with the package relevant user-readable descriptive
information that a virtualization platform can use to streamline the installation experience.

Supports both single VM and multiple-VM configurations

OVF supports both standard single VM packages and packages containing complex, multi-tier
services consisting of multiple interdependent VMs.

Portable VM packaging

OVF is virtualization platform neutral, while also enabling platform-specific enhancements to be
captured. It supports the full range of virtual hard disk formats used for hypervisors today, and it
is extensible, which will allow it to accommodate formats that may arise in the future. Virtual
machine properties are captured concisely and accurately.

Vendor and platform independent

OVF does not rely on the use of a specific host platform, virtualization platform, or guest
operating system.

Extensible

OVF is immediately useful — and extensible. It is designed to be extended as the industry
moves forward with virtual appliance technology. It also supports and permits the encoding of
vendor-specific metadata to support specific vertical markets.

Localizable

OVF supports user-visible descriptions in multiple locales, and it supports localization of the
interactive processes during installation of an appliance. This capability allows a single
packaged appliance to serve multiple market opportunities.

Open standard

OVF has arisen from the collaboration of key vendors in the industry, and it is developed in an
accepted industry forum as a future standard for portable virtual machines.

It is not an explicit goal for OVF to be an efficient execution format. A hypervisor is allowed but not
required to run software in virtual machines directly out of the Open Virtualization Format.

Version 1.0.0d

142

143

144
145

146

147
148
149

150

151
152
153

154
155

156
157

158
159

160
161

162
163

164
165

166
167

168
169

170
171

172
173

174
175

176
177

DSP0243 Open Virtualization Format Specification

Open Virtualization Format Specification

1 Scope

The Open Virtualization Format (OVF) Specification describes an open, secure, portable, efficient and
extensible format for the packaging and distribution of software to be run in virtual machines.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

2.1 Approved References

ANSI/IEEE Standard 1003.1-2001, IEEE Standard for Information Technology- Portable Operating
System Interface (POSIX), Institute of Electrical and Electronics Engineers, August 2001,
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316

DMTF DSP0004, Common Information Model (CIM) Infrastructure Specification,
http://www.dmtf.org/standards/published _documents/DSP0004.pdf

DMTF DSP1043, Allocation Capabilities Profile (ACP),
http://www.dmtf.org/standards/published documents/DSP1043.pdf

DMTF CIM Schema Version 2.19 (MOF files),
http://www.dmtf.org/standards/cim/cim_schema v219

DMTF DSP1041, Resource Allocation Profile (RAP),
http://www.dmtf.org/standards/published documents/DSP1041.pdf

DMTF DSP1042, System Virtualization Profile (SVP),
http://www.dmtf.org/standards/published documents/DSP1042.pdf

DMTF DSP1057, Virtual System Profile (VSP),
http://www.dmtf.org/standards/published documents/DSP1057.pdf

DMTF DSP0230, WS-CIM Mapping Specification,
http://www.dmtf.org/standards/published documents/DSP0230.pdf

IETF RFC 1738, T. Berners-Lee, Uniform Resource Locators (URL), December 1994,
http://www.ietf.org/rfc/rfc1738.txt

IETF RFC1952, P. Deutsch, GZIP file format specification version 4.3, May 1996,
http://www.ietf.org/rfc/rfc1952.txt

IETF RFC 2234, Augmented BNF (ABNF),
http://www.ietf.org/rfc/rfc2234.txt

IETF RFC 2616, R. Fielding et al, Hypertext Transfer Protocol — HTTP/1.1, June 1999,
http://www.ietf.org/rfc/rfc2616.txt

IETF RFC 2818, E. Rescorla, HTTP over TLS, May 2000,
http://www.ietf.org/rfc/rfc2818.txt

Version 1.0.0d 7

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316�
http://www.dmtf.org/standards/published_documents/DSP0004.pdf�
http://www.dmtf.org/standards/published_documents/DSP1043.pdf�
http://www.dmtf.org/standards/cim/cim_schema_v219�
http://www.dmtf.org/standards/published_documents/DSP1041.pdf�
http://www.dmtf.org/standards/published_documents/DSP1042.pdf�
http://www.dmtf.org/standards/published_documents/DSP1057.pdf�
http://www.dmtf.org/standards/published_documents/DSP0230.pdf�
http://www.ietf.org/rfc/rfc1738.txt�
http://www.ietf.org/rfc/rfc1952.txt�
http://www.ietf.org/rfc/rfc2234.txt�
http://www.ietf.org/rfc/rfc2616.txt�
http://www.ietf.org/rfc/rfc2818.txt�

178
179

180
181

182

183
184

185
186

187
188

189
190

191
192

193
194
195

196
197
198

199
200

201
202

203
204

205
206

207
208
209

210
211
212

213
214
215

Open Virtualization Format Specification DSP0243

IEFT RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax,
http://www.ietf.org/rfc/rfc3986.txt

ISO 9660, 1988 Information processing-Volume and file structure of CD-ROM for information interchange,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=17505

2.2 Other References

ISO, ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=Il&objld=4230456&objAction=browse&sort=subtype

W3C, Y. Savourel et al, Best Practices for XML Internationalization, Working Draft, October 2007,
http://www.w3.0rg/TR/2007/WD-xml-i18n-bp-20071031

W3C, S. Gao et al, XML Schema Definition Language (XSDL) 1.1, Part 1: Structures, Working Draft,
August 2007, http://www.w3.0rg/TR/xmischemall-1

W3C, D. Peterson et al, XML Schema Definition Language (XSDL) 1.1, Part 2: Datatypes, Working Draft,
February 2006, http://www.w3.0org/TR/xmlschemall-2

3 Terms and Definitions
For the purposes of this document, the following terms and definitions apply.

3.1
can
used for statements of possibility and capability, whether material, physical, or causal

3.2
cannot
used for statements of possibility and capability, whether material, physical, or causal

3.3
conditional

indicates requirements to be followed strictly to conform to the document when the specified conditions
are met

3.4
mandatory

indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

35
may
indicates a course of action permissible within the limits of the document

3.6
need not
indicates a course of action permissible within the limits of the document

3.7
optional
indicates a course of action permissible within the limits of the document

8 Version 1.0.0d

http://www.ietf.org/rfc/rfc3986.txt�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=17505�
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype�
http://www.w3.org/TR/2007/WD-xml-i18n-bp-20071031�
http://www.w3.org/TR/xmlschema11-1�
http://www.w3.org/TR/xmlschema11-2�

216
217

218
219

220
221

222
223

224
225

226
227

228
229
230

231
232
233

234
235
236

237
238

239
240

241
242
243

244
245
246

247
248

249
250

251
252

253
254

DSP0243 Open Virtualization Format Specification

3.8
shall

indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

3.9
shall not

indicates requirements to be followed strictly to conform to the document and from which no deviation is
permitted

3.10
should

indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

3.11
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

3.12
appliance
see virtual appliance

3.13
deployment platform
the product that installs an OVF package

3.14
guest software

the software, stored on the virtual disks, that runs when a virtual machine is powered on
The guest is typically an operating system and some user-level applications and services.

3.15
OVF package
OVF XML descriptor file accompanied by zero or more files

3.16
platform
see deployment platform

3.17
virtual appliance

a service delivered as a complete software stack installed on one or more virtual machines
A virtual appliance is typically expected to be delivered in an OVF package.

3.18
virtual hardware

the hardware (including the CPU, controllers, Ethernet devices, and disks) that is seen by the guest
software

Version 1.0.0d 9

255
256

257
258
259
260

261
262

263
264
265
266

267
268

269
270
271

272
273
274

275
276
277

278
279
280

281

282

283
284
285
286
287
288

289

290
291
292
293

Open Virtualization Format Specification DSP0243

3.19
virtual machine

the complete environment that supports the execution of guest software

A virtual machine is a full encapsulation of the virtual hardware, virtual disks, and the metadata
associated with it. Virtual machines allow multiplexing of the underlying physical machine through a
software layer called a hypervisor.

3.20
virtual machine collection

a service comprised of a set of virtual machines

The service can be a simple set of one or more virtual machines, or it can be a complex service built out
of a combination of virtual machines and other virtual machine collections. Because virtual machine
collections can be composed, it enables complex nested components.

4 Symbols and Abbreviated Terms
The following symbols and abbreviations are used in this document.

4.1
CIM
Common Information Model

4.2
IP
Internet Protocol

4.3
OVF
Open Virtualization Format

4.4
VM
Virtual Machine

5 OVF Packages

5.1 OVF Package Structure

An OVF package shall consist of the following files:
e one OVF descriptor file (descriptor file or .ovf file)
e zero or one OVF manifest file (manifest file or .mf file)
e zero or one OVF certification file (certification file or .cert file)
e zero or more disk image files
e zero or more additional resource files, such as ISO images

The file extensions .ovf, .mf and .cert should be used.

EXAMPLE 1: The following list of files is an example of an OVF package.
package.ovf
package.mf
de-DE-resources.xml

10 Version 1.0.0d

294
295
296

297

298
299
300
301

302

303

304
305
306
307

308
309

310

311

312
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329

330
331

332
333
334
335
336
337
338

DSP0243 Open Virtualization Format Specification

vmdiskl.vmdk
vmdisk2.vmdk
resource. iso

NOTE: The previous example uses VMDK disk files, but multiple disk formats are supported.

Optionally, an OVF package may have a manifest file with extension .mf containing the SHA-1 digests of
individual files in the package. The manifest file shall have the same base name as the .ovf file. If the
manifest file is present, a consumer of the OVF package shall verify the digests by computing the actual
SHA-1 digests and comparing them with the digests listed in the manifest file.

The syntax definitions below use ABNF with the exceptions listed in ANNEX A.

The format of the .mf file is as follows:
*(file_digest)

manifest_file

file_digest = algorithm (" file_name ")" "=" digest nl
algorithm = "SHA1"
digest = 40(hex-digit) // 160-bit digest in 40-digit hexadecimal
hex-digit ="o"™ | "1 | 2™ | Y3t | 4t | 5™ | et | 7" | 8T | M9 | "a" |
b | Yc™ | Yd™] TYe™ | "FT
nl = Ox0a
EXAMPLE 2: The following example show the partial contents of a manifest file.

SHA1(package.ovf)= 237de0261h285b85528901da058475e56034da95
SHA1(vmdiskl.vmdk)= 393a66df214e192ffbfedb78528b5be75cc9elc3

An OVF package may be signed by signing the manifest file. The signature of the digest is stored in a
.cert file along with the base64-encoded X.509 certificate. The .cert file shall have the same base name
as the OVF descriptor file. A consumer of the OVF package shall verify the signature and should validate
the certificate. The format of the .cert file shall be:

certificate_file = signature_part certificate_part

signature_part = algorithm (" file_name)" "=" signature nl

algorithm = "SHA1"

signature = 128(hex-digit) // 512-bit signature in 128 digit hexadecimal
certificate part = certificate _header certificate body certificate footer
certificate _header = "——--—- BEGIN CERTIFICATE----—- " nl

certificate_footer = "——-—- END CERTIFICATE--—--- " nl

certificate_body = base64-encoded-certificate nl

// base64-encoded-certificate is a base64-encoded X.509
// certificate, which may be split across multiple lines

hex-digit ="0" | "1™ | "2 | 3" | "4"] 5" | 6" | 7"] "8] "9T | "a”
| b | te | vd] et | U
nl = 0Ox0a

EXAMPLE 3: The following list of files is an example of a signed OVF package.

package.ovf
package.mf
package.cert
de-DE-resources.xml
vmdiskl.vmdk
vmdisk2.vmdk
resource. iso

Version 1.0.0d 11

339

340
341
342
343
344
345
346
347
348
349
350
351
352

353

354
355
356
357
358
359
360

361

362
363
364

365

366
367
368
369

370
371
372

373
374
375

376
377

378
379
380

Open Virtualization Format Specification DSP0243

EXAMPLE 4: The following example shows the contents of a sample OVF certification file:

SHA1(package -mF)= 7f4b8efb8Fe20c06df1db68281a63F1b088e19dbf00e5af9db5e8e3e319de
7019db88a3bc699bab6ccd9e09171e21e88ee20b5255cec31c28350613b2¢c529089

M1 1BgjCCASWCAQQWDQYJKoZ I hveNAQEEBQAWODELMAKGA1UEBhMCQVUXDDAKBgNV
BAgTA1FMRDEbMBKGALUEAXMSULINMZWF5L3JzYSBOZXNO IENBMBAXDTKIMTAWOT Iz
Mz lwNVoXDTk4MDcwNT I zMz lwNVowYDELMAKGA1UEBhMCQVUXDDAKBgNVBAQTALFM
RDEZMBCGALUEChMQTWIuY29t1FBOeS4gTHRKL j ELMAKGALIUECXMCQ1MxGzAZBgNV
BAMTEINTTGVheSBkZW1vIHNIcnZIcjBcMAOGCSQGS Ib3DQEBAQUAAOSAMEGCQQC3
LCXcScWuaOPFLkHBLmM2Ve jgpA1F4RQ8q0VjRiPafjx/Z/aWH31pdMVvuJGa/wFXb
/nDFLD IfWp+oCPwhBtVPAgMBAAEWDQYJKoZ I hveNAQEEBQADQQArNFsihWi jBzbO
DCsUOBvL2bvSwJrPEgFIkDq3F4AM6EGuUtL9axEcANWgbbEdAVNID1dmEmoWny27Pn
IMs6Z0ZB

5.2 Virtual Disk Formats

OVF does not require any specific disk format to be used, but to comply with this specification the disk
format shall be given by a URI which identifies an unencumbered specification on how to interpret the
disk format. The specification need not be machine readable, but it shall be static and unique so that the
URI may be used as a key by software reading an OVF package to uniquely determine the format of the
disk. The specification shall provide sufficient information so that a skilled person can properly interpret
the disk format for both reading and writing of disk data. It is recommended that these URIs are
resolvable.

5.3 Distribution as a Single File

An OVF package can be stored as a single file using the TAR format. The extension of that file should be
.ova (open virtual appliance or application).
EXAMPLE: The following example shows a sample filename for an OVF package of this type:

D:\virtualappliances\myapp.ova

Ordinarily, a TAR extraction tool would have to scan the whole archive, even if the file requested is found
at the beginning, because replacement files can be appended without modifying the rest of the archive.
For OVF TAR files, duplication is not allowed within the archive. In addition, the files shall be in the
following order inside the archive:

1) .ovfdescriptor file
2) .mf manifest file (optional)
3) .cert certificate file (optional)

4) The remaining files shall be in the same order as listed in the References section (see 7.1).
Note that any external string resource bundle files for internationalization shall be first in the
References section (see clause 10).

5) .mf manifest file (optional)

6) .cert certificate (optional)

Note that the certificate file is optional. If no certificate file is present, the manifest file is also optional. If
the manifest or certificate files are present, they shall either both be placed after the OVF descriptor file,
or both be placed at the end of the archive.

12 Version 1.0.0d

381
382
383
384

385
386

387

388

389
390
391
392
393

394

395
396
397

398
399

400
401
402

403
404

405
406

407

408

409
410

DSP0243 Open Virtualization Format Specification

For deployment, the ordering restriction ensures that it is possible to extract the OVF descriptor from an
OVF TAR file without scanning the entire archive. For generation, the ordering restriction ensures that an
OVF TAR file can easily be generated on-the-fly. The restrictions do not prevent OVF TAR files from
being created using standard TAR packaging tools.

The TAR format used shall comply with the USTAR (Uniform Standard Tape Archive) format as defined
by the POSIX IEEE 1003.1 standards group.

5.4 Distribution as a Set of Files

An OVF package can be made available as a set of files — for example on a standard Web server:

http://mywebsite/virtualappliances/package.ovf
http://mywebsite/virtualappliances/vmdiskl.vmdk
http://mywebsite/virtualappliances/vmdisk2.vmdk
http://mywebsite/virtualappliances/resource.iso
http://mywebsite/virtualappliances/de-DE-resources.xml

6 OVF Descriptor

All metadata about the package and its contents is stored in the OVF descriptor. This is an extensible
XML document for encoding information, such as product details, virtual hardware requirements, and
licensing.

The ovf-envelope.xsd XML schema definition file for the OVF descriptor contains the elements and
attributes.

Clauses 7, 8, and 9, describe the semantics, structure, and extensibility framework of the XML descriptor.
These clauses are not a replacement for reading the schema definitions, but they complement the
schema definitions.

The XML document of an OVF descriptor shall contain one Envelope element, which is the only element
allowed at the top level.

The XML namespaces used in this specification are listed in Table 1. The choice of any namespace prefix
is arbitrary and not semantically significant.

Table 1 — XML Namespace Prefixes

Prefix XML Namespace

ovf http://schemas.dmtf.org/ovf/envelope/1l
ovfenv http://schemas.dmtf.org/ovf/environment/1
rasd http://schemas.dmtf.org/wbhem/wscim/1/cim-

schema/2/CIM_ResourceAl locationSettingData

vssd http://schemas.dmtf.org/wbhem/wscim/1/cim-
schemas/2/CIM_VirtualSystemSettingData

7 Envelope element

The Envelope element describes all metadata for the virtual machines (including virtual hardware), as
well as the structure of the OVF package itself.

Version 1.0.0d 13

411
412

413
414
415

416

417
418

419
420

421

422
423

424
425

426
427

428
429

430
431

432
433

434

435
436

437
438

439

440
441

442

443
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

Open Virtualization Format Specification DSP0243

The outermost level of the envelope consists of the following parts:

e Aversion indication, defined by the XML namespace URIs.

o Alist of file references to all external files that are part of the OVF package, defined by the
References element and its Fi le child elements. These are typically virtual disk files, ISO
images, and internationalization resources.

e A metadata part, defined by section elements, as defined in clause 9.

e A description of the content, either a single virtual machine (Virtual System element) or a
collection of multiple virtual machines (VirtualSystemCol lection element).

e A specification of message resource bundles for zero or more locales, defined by a Strings
element for each locale.

EXAMPLE: An example of the structure of an OVF descriptor with the top level Enve lope element follows:

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmIns:vssd="http://schemas.dmtf.org/wbem/wscim/1/cim-

schema/2/CIM_VirtualSystemSettingData™

xmIns:rasd="http://schemas.dmtf.org/wbem/wscim/1/cim-

schema/2/CIM_ResourceAllocationSettingData™

xmIns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
xmIns="http://schemas.dmtf.org/ovf/envelope/1"
xml : lang=""en-US"">
<References>
<File ovf:id="de-DE-resources.xml" ovf:size="15240"
ovf:href="http://mywebsite/virtualappliances/de-DE-resources.xml"/>
<File ovf:id="Ffilel" ovf:href="vmdiskl.vmdk"™ ovf:size="180114671"/>
<File ovf:id="file2" ovf:href="vmdisk2.vmdk" ovf:size='"4882023564"

ovf:chunkSize="2147483648"/>
<File ovf:id="Ffile3" ovf:href="resource.iso" ovf:size="212148764"
ovf:compression="'gzip"/>
<File ovf:id="icon™ ovf:href="icon.png" ovf:size="1360"/>
</References>
<I-- Describes meta-information about all virtual disks in the package -->
<DiskSection>
<Info>Describes the set of virtual disks</Info>
<I-- Additional section content -->
</DiskSection>
<I-- Describes all networks used in the package -->
<NetworkSection>
<Info>List of logical networks used in the package</Info>
<I-- Additional section content -->
</NetworkSection>
<SomeSection ovf:required="false">
<Info>A plain-text description of the content</Info>
<I-- Additional section content -->
</SomeSection>
<I-- Additional sections can follow -->
<VirtualSystemCollection ovf:id="Some Product'>
<I-- Additional sections including VirtualSystem or VirtualSystemCollection-->
</VirtualSystemCollection >
<Strings xml:lang="de-DE">
<I-- Specification of message resource bundles for de-DE locale -->
</Strings>
</Envelope>

14

Version 1.0.0d

http://mywebsite/virtualappliances/de-DE-resources.xml�

463
464
465

466

467
468
469

470
471

472
473
474
475
476
477
478
479

480
481

482
483
484
485
486
487

488
489
490

491
492
493
494

495
496
497
498

499
500

501
502
503

DSP0243 Open Virtualization Format Specification

The optional xml : lang attribute on the Envelope element specifies the default locale for messages in
the descriptor. The optional Strings elements contain message resource bundles for different locales.
See clause 10 for more details on internationalization support.

7.1 File References

The file reference part defined by the References element allows a tool to easily determine the integrity
of an OVF package without having to parse or interpret the entire structure of the descriptor. Tools can
safely manipulate (for example, copy or archive) OVF packages with no risk of losing files.

External string resource bundle files for internationalization shall be placed first in the References
element, see clause 10 for details.

Each File element in the reference part shall be given an identifier using the ovf: id attribute. The
identifier shall be unique inside an OVF package. Each Fi le element shall be specified using the
ovF:href attribute, which shall contain a URL. The URL schemes "Ffile", ""http", and "https" shall
be supported. Using other URL schemes is allowed but not recommended. If no URL scheme is
specified, the value of the ovf:href attribute shall be interpreted as a path name of the referenced file
that is relative to the location of the OVF descriptor file itself. The relative path name shall use the syntax
of relative-path references in IEFT REC 3986. The referenced file shall exist. Two different File
elements shall not reference the same file with their ovF:href attributes.

The size of the referenced file can optionally be specified using the ovf:size attribute. The unit of this
attribute is always bytes.

Each file referenced by a Fi le element may be compressed using gzip (see REC1952), which is
indicated using the ovf:compression="'gzip" attribute. Omitting the compression attribute, or
specifying it as ""identity", states that no compression is used. Alternatively, if the hrefis an HTTP or
HTTPS URL, then the compression may be specified by the HTTP server by using the HTTP header
Content-Encoding: gzip (see RFC2616). Using HTTP content encoding in combination with the
ovf:compression attribute is allowed, but in general does not improve the compression ratio.

Files to be referenced from the reference part may be split into chunks to accommodate file size
restrictions on certain file systems. Chunking is indicated by the presence of the ovf:chunkSize
attribute; this attribute specifies the size of each chunk, except the last, which may be smaller.

When ovf:chunkSize is specified, the Fi le element shall reference a chunk file representing a chunk
of the entire file. In this case, the value of the ovf:href attribute specifies only a part of the URL and the
syntax for the URL resolving to the chunk file is given below. The syntax uses ABNF with the exceptions
listed in ANNEX A.

chunk-url href-value chunk-number

chunk-number = 9(decimal-digit)

decimal-digit = 0" | "1 | "2 | "3" | ™4™ | “5" | 6" | "7 | 8" | "9"
where href-value is the value of the ovF: href attribute, and chunk-number is the 0-based position of the
chunk starting with the value 0 and increases with increments of 1 for each chunk.

Chunking can be combined with compression, the entire file is then compressed before chunking and
each chunk shall be an equal slice of the compressed file, except for the last chunk which may be
smaller.

Version 1.0.0d 15

504

505
506
507

508
509
510

511

512
513
514
515
516
517
518

519
520
521
522

523

524
525
526
527
528
529
530
531
532
533
534

535
536
537
538
539

540
541
542

543

544
545
546
547

Open Virtualization Format Specification DSP0243

7.2 Content Part

The virtual machine configurations required by an OVF package is represented by a VirtualSystem or
VirtualSystemCol lection element. These elements shall be given an identifier using the ovF: id
attribute, direct child elements of a VirtualSystemCol lection shall have unique identifiers.

The Virtual System element describes a single virtual machine and is simply a container of section
elements. These section elements describe virtual hardware, resources, product information, and so on,
and are described in detail in clause 8 and 9.

The structure of a Virtual System element is as follows:

<VirtualSystem ovf:id="Simple Appliance">
<Info>A virtual machine</Info>

<SomeSection>
<I-- Additional section content -->

</SomeSection>
<I-- Additional sections can follow -->

</VirtualSystem>

The VirtualSystemCol lection element is a container of multiple Virtual System or
VirtualSystemCol lection elements. Thus, arbitrary complex configurations can be described. The
section elements at the VirtualSystemCol lection level describe appliance information, properties,
resource requirements, and so on, and are described in detail in clause 9.

The structure of a VirtualSystemCol lection element is as follows:

<VirtualSystemCollection ovf:id="Multi-tier Appliance">
<Info>A collection of virtual machines</Info>

<SomeSection>

<I-- Additional section content -->
</SomeSection>
<I-- Additional sections can follow -->
<VirtualSystem ovf:id="...">

<!-- Additional sections -->
</VirtualSystem>

<I-- Additional VirtualSystem or VirtualSystemCollection elements can follow-->
</VirtualSystemCollection>

In the OVF schema, the VirtualSystem and VirtualSystemCol lection elements are part of a
substitution group with the Content element as head of the substitution group. The Content element is
abstract and cannot be used directly. Similarly, all sections are part of a substitution group with the
Section element as head of the substitution group. The Section element is abstract and cannot be
used directly.

All elements in the Content and Section substitution groups shall contain an Info element which
contains a human readable description of the meaning of this entity. See clause 10 for details on how to
localize the Info element.

7.3 Extensibility

The OVF schemas associated with this specification are expressed in XML Schema 1.0. Extensions that
are subtypes of Section can be added, but existing types cannot be extended with additional elements.
The plan is to add an extension model based on the design of the open content model in XML Schema
1.1.

16 Version 1.0.0d

548

549
550
551
552

553

554

555
556
557

558
559
560
561

562
563

564

565
566

567
568

569
570
571

572

573
574

575

576
577
578
579

580
581
582

583

584
585
586
587

DSP0243 Open Virtualization Format Specification

Custom extensions shall not use XML namespaces defined in this specification.

All subtypes of Section contain an Info element which contains a human readable description of the
meaning of this entity. The values of Info elements can be used, for example, to give meaningful
warnings to users when a section is being skipped, even if the parser does not know anything about the
section. See clause 10 for details on how to localize the Info element.

7.4 Compatibility

On extensions, a Boolean ovf: required attribute specifies whether the information in the element is
required for correct behavior or optional. If not specified, the ovf:required attribute defaults to FALSE.
An OVF application that detects an extension that is required and that it does not understand shall fail.

For known Section elements, if additional child elements that are not understood are found and the
value of their ovf:required attribute is TRUE, the OVF application shall interpret the entire section as
one it does not understand. The check is not recursive; it applies only to the direct children of the
Section element.

This behavior ensures that older parsers will reject newer OVF specifications, unless explicitly instructed
not to do so.

EXAMPLE:

<AnnotationSection>
<Info>Specifies an annotation for this virtual machine</Info>

<Annotation>This is an example of how a future element (Author) can still be
parsed by older clients</Annotation>

<I-- AnnotationSection extended with Author element -->
<Author ovf:required="false>John Smith</Author>
</AnnotationSection>

8 Virtual Hardware Description

8.1 VirtualHardware Section

The virtual hardware required by a virtual machine is specified in the VirtualHardware section. This
specification supports abstract or incomplete hardware descriptions in which only the major devices are
described. The hypervisor is allowed to create additional virtual hardware controllers and devices, as long
as the required devices listed in the descriptor are realized.

This virtual hardware description is based on the CIM classes CIM_Virtual SystemSettingData and
CIM_ResourceAl locationSettingData. The XML representation of the CIM model is based on the

WS-CIM mapping (DSP0230).

EXAMPLE: Example of VirtualHardware section:
<VirtualHardwareSection ovf:transport="iso">
<Info>500Mb, 1 CPU, 1 disk, 1 nic virtual machine</Info>
<System>
<vssd:VirtualSystemType>vmx-4</vssd:VirtualSystemType>

Version 1.0.0d 17

588
589
590
591
592
593
594
595
596
597
598

599
600

601
602
603

604
605
606
607
608

609
610
611
612
613
614
615
616
617

618
619
620

621
622
623

624

625

626
627
628

629
630
631

Open Virtualization Format Specification DSP0243

</System>

<ltem>
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>
<rasd:Description>Memory Size</rasd:Description>
<rasd:ElementName>512 MB of memory</rasd:ElementName>
<rasd: InstancelD>2</rasd: InstancelD>
<rasd:ResourceType>4</rasd:ResourceType>
<rasd:VirtualQuantity>512</rasd:VirtualQuantity>

</ltem>

<I-- Additional Item elements can follow -->

</VirtualHardwareSection>

VirtualHardware is a required child element for a VirtualSystem element, and it is disallowed as a
direct child element of a Virtual SystemCol lection element and of an Enve lope element.

Multiple VirtualHardware element occurrences are allowed within a single VirtualSystem element.
The OVF application can select the most appropriate virtual hardware description, typically based on the
family attribute.

The ovf:transport attribute specifies the types of transport mechanisms by which properties are
passed to the virtual machine in an OVF environment document. This attribute supports a pluggable and
extensible architecture for providing guest/platform communication mechanisms. Several transport types
can be specified separated by single space character. See 9.5 for a description of properties and clause
11 for a description of transport types and OVF environments.

The vssd:VirtualSystemType element specifies a virtual system type identifier, which is an
implementation defined string that uniquely identifies the type of the virtual system. For example, a virtual
system type identifier could be vmx-4 for VMware’s fourth-generation virtual hardware or xen-3 for Xen'’s
third-generation virtual hardware. Zero or more virtual system type identifiers may be specified separated
by single space character. In order for the OVF virtual system to be deployable on a target platform, the
virtual machine on the target platform is required to support at least one of the virtual system types
identified in the vssd:VirtualSystemType elements. The virtual system type identifiers specified in
vssd:VirtualSystemType elements are expected to be matched against the values of property
VirtualSystemTypesSupported of CIM class CIM_VirtualSystemManagementCapabilities (see DSP1042).

The virtual hardware characteristics are described as a sequence of I'tem elements. The Item element
is an XML representation of an instance of the CIM class CIM_ResourceAl locationSettingData.
The element can describe all memory and CPU requirements as well as virtual hardware devices.

Multiple device subtypes can be specified in an 1tem element, separated by single space character.

EXAMPLE:
<rasd:ResourceSubType>buslogic Isilogic</rasd:ResourceSubType>

8.2 Extensibility

The optional ovf: required attribute on the I'tem element specifies whether the realization of the
element (for example, a CD-rom or USB controller) is required for correct behavior of the guest software.
If not specified, ovf: required defaults to FALSE.

On child elements of the I'tem element, the optional Boolean attribute ovf: required shall be
interpreted, even though these elements are in a different RASD WS-CIM namespace. A tool parsing an
Item element shall act according to Table 2.

18 Version 1.0.0d

632

633

634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660
661
662

663

664
665
666
667
668
669
670
671
672

DSP0243

Open Virtualization Format Specification

Table 2 — Actions for Child Elements with ovf:required Attribute

Child Element

ovf:required Attribute Value Action

Known

TRUE or not specified Shall interpret 1tem

Known

FALSE Shall interpret 1tem

Unknown

TRUE or not specified Shall fail 1tem

Unknown

FALSE Shall ignore I'tem

8.3 Virtual

Hardware Elements

The general form of any 1tem element in a VirtualHardware element is as follows:

<ltem ovf:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:

ovf:configuration="." ovf:bound=".">
Address> ... </rasd:Address>

AddressOnParent> ... </rasd:AddressOnParent>
AllocationUnits> ... </rasd:AllocationUnits>
AutomaticAllocation> ... </rasd:AutomaticAllocation>
AutomaticDeallocation> ... </rasd:AutomaticDeallocation>
Caption> ... </rasd:Caption>

Connection> ... </rasd:Connection>

<I-- multiple connection elements can be specified -->

<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:

</ltem>

ConsumerVisibility> ... </rasd:ConsumerVisibility>
Description> ... </rasd:Description>
ElementName> ... </rasd:ElementName>
HostResource> ... </rasd:HostResource>
InstancelD> ... </rasd:InstancelD>

Limit> ... </rasd:Limit>

MappingBehavior> ... </rasd:MappingBehavior>
OtherResourceType> ... </rasd:0OtherResourceType>
Parent> ... </rasd:Parent>

PoolID> ... </rasd:PoolID>

Reservation> ... </rasd:Reservation>
ResourceSubType> ... </rasd:ResourceSubType>
ResourceType> ... </rasd:ResourceType>
VirtualQuantity> ... </rasd:VirtualQuantity>
Weight> ... </rasd:Weight>

The elements represent the properties exposed by the CIM_ResourceAl locationSettingData
class. They have the semantics of defined settings as defined in DSP1041, any profiles derived from
DSP1041 for specific resource types, and this document.

EXAMPLE: The following example shows a description of the number of virtual CPUs:

<ltem>

<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:
<rasd:

</ltem>

AllocationUnits>hertz * 10M6</rasd:AllocationUnits>

Description>The number of virtual CPUs</rasd:Description>
ElementName>2 virtual CPUs, a 300 MHz reservation</rasd:ElementName>
InstancelD>1</rasd: InstancelD>

Reservation>300</rasd:Reservation>
ResourceType>3</rasd:ResourceType>
VirtualQuantity>2</rasd:VirtualQuantity>

Version 1.0.0d

19

673
674
675

676
677
678

679
680
681

682
683

684
685
686

687
688
689

690

691
692
693

694

Open Virtualization Format Specification DSP0243

The Description element is used to provide additional metadata about the element itself. This element
enables an OVF application to provide descriptive information about all items, including items that were
unknown at the time the application was written.

The Caption, Description and ElementName elements are localizable using the ovf:msgid
attribute from the OVF envelope namespace. See clause 10 for more details on internationalization
support.

The optional ovf:configuration attribute contains a list of configuration names. See clause 9.8 on
deployment options for semantics of this attribute. The optional ovf:bound attribute is used to specify
ranges, see clause 8.4.

Devices such as disks, CD-ROMs, and networks need a backing from the deployment platform. The
requirements on a backing are either specified using the HostResource or the Connection element.

For an Ethernet adapter, a logical network name is specified in the Connection element. Ethernet
adapters that refer to the same logical network name within an OVF package shall be deployed on the
same network.

The HostResource element is used to refer to resources included in the OVF descriptor as well as
logical devices on the deployment platform. Values for HostResource elements are formatted as URIs.
The URIs in Table 3 shall be used to refer to resources included the OVF descriptor.

Table 3 — HostResource Element

Content Description

ovf:/file/<id> A reference to a file in the OVF, as specified in the References section. <id> shall be the
value of the ovF: id attribute of the Fi le element being referenced.

ovf:/disk/<id> A reference to a virtual disk, as specified in the DiskSection. <id> shall be the value of
the ovf:diskld attribute of the Disk element being referenced.

If no backing is specified for a device that requires a backing, the deployment platform shall make an
appropriate choice, for example, by prompting the user. Specifying more than one backing for a device is
not allowed.

Table 4 gives a brief overview on how elements are used to describe virtual devices and controllers.

20 Version 1.0.0d

695

696
697

698

699
700
701

702
703

704
705

706
707
708
709

DSP0243 Open Virtualization Format Specification

Table 4 — Elements for Virtual Devices and Controllers

Element Usage

rasd:Description A human-readable description of the meaning of the information. For example,
“Specifies the memory size of the virtual machine”.

rasd:ElementName A human-readable description of the content. For example, “256MB memory”.

rasd: InstancelD A unique instance ID of the element within the section.

rasd:HostResource Abstractly specifies how a device shall connect to a resource on the

deployment platform. Not all devices need a backing. See Table 3.

rasd:ResourceType Specifies the kind of device that is being described.
rasd:OtherResourceType

rasd:ResourceSubtype

rasd:AutomaticAllocation | For devices that are connectable, such as floppies, CD-ROMs, and Ethernet
adaptors, this element specifies whether the device should be connected at

power on.
rasd:Parent The InstancelD of the parent controller (if any).
rasd:Connection For an Ethernet adapter, this specifies the abstract network connection name

for the virtual machine. All Ethernet adapters that specify the same abstract
network connection name within an OVF package shall be deployed on the
same network. The abstract network connection name shall be listed in the
NetworkSection at the outermost envelope level.

rasd:Address Device specific. For an Ethernet adapter, this specifies the MAC address.
rasd:AddressOnParent For a device, this specifies its location on the controller.
rasd:AllocationUnits Specifies the units of allocation used. For example, “byte * 2/20".
rasd:VirtualQuantity Specifies the quantity of resources presented. For example, “256”.
rasd:Reservation Specifies the minimum quantity of resources guaranteed to be available.
rasd:Limit Specifies the maximum quantity of resources that will be granted.
rasd:Weight Specifies a relative priority for this allocation in relation to other allocations.

Only fields directly related to describing devices are mentioned. Refer to the CIM MOF for a complete
description of all fields.

8.4 Ranges on Elements

The optional ovf:bound attribute can be used to specify ranges for the 1tem elements. A range has a
minimum, normal, and maximum value, denoted by min, normal, and max, where min <= normal <=
max. The default values for min and max are those specified for normal.

A platform deploying an OVF package is recommended to start with the normal value and adjust the
value within the range for ongoing performance tuning and validation.

For the 1'tem elements in VirtualHardware and ResourceAl location elements, the following
additional semantics is defined:

e Each I'tem element has an optional ovf:bound attribute. This value can be specified as min,
max, or normal. The value defaults to normal. If the attribute is not specified or is specified as
normal, then the item is interpreted as being part of the regular virtual hardware or resource
allocation description.

Version 1.0.0d 21

710
711
712

713

714
715

716
717

718
719
720

721
722

723
724

725

726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Open Virtualization Format Specification DSP0243

If the ovF:bound value is specified as either min or max, the item is used to specify the upper
or lower bound for one or more values for a given InstancelD. Such an item is called a range
marker.

The semantics of range markers are:

InstancelD and ResourceType shall be specified, and the ResourceType shall match
other 1'tem elements with the same InstancelD.

Specifying more than one min range marker or more than one max range marker for a given
RASD (identified with InstancelD) is invalid.

An Item element with a range marker shall have a corresponding 1tem element without a
range marker, that is, an I'tem element with no ovf:bound attribute or ovf:bound attribute
with value normal. This corresponding item specifies the default value.

For an I1'tem element where only a min range marker is specified, the max value is unbounded
upwards within the set of valid values for the property.

For an 1tem where only a max range marker is specified, the min value is unbounded
downwards within the set of valid values for the property.

The default value shall be inside the range.

The use of non-integer elements in range marker RASDs is invalid.

EXAMPLE: The following example shows the use of range markers:

<VirtualHardwareSection>

<Info>...</Info>

<ltem>
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>
<rasd:ElementName>512 MB memory size</rasd:ElementName>
<rasd: InstancelD>0</rasd: InstancelD>
<rasd:ResourceType>4</rasd:ResourceType>
<rasd:VirtualQuantity>512</rasd:VirtualQuantity>

</ltem>

<ltem ovf:bound="min">
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>
<rasd:ElementName>384 MB minimum memory size</rasd:ElementName>
<rasd: InstancelD>0</rasd: InstancelD>
<rasd:Reservation>384</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>

</ltem>

<ltem ovf:bound="max">
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>
<rasd:ElementName>1024 MB maximum memory size</rasd:ElementName>
<rasd: InstancelD>0</rasd: InstancelD>
<rasd:Reservation>1024</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>

</ltem>

</VirtualHardwareSection>

22

Version 1.0.0d

752
753
754

755

756
757
758

DSP0243

9 Core Metadata Sections

The following core metadata sections are defined:

Open Virtualization Format Specification

Specifies a free-form annotation on an entity

VirtualSystemCollection

Section Locations Multiplicity
DiskSection Envelope Zero or One
Describes meta-information about all virtual disks in the

package

NetworkSection Envelope Zero or One
Describes logical networks used in the package

ResourceAllocationSection VirtualSystemCollection Zero or One
Specifies reservations, limits, and shares on a given

resource, such as memory or CPU for a virtual machine

collection

AnnotationSection VirtualSystem Zero or One

ProductSection

Specifies product-information for a package, such as
product name and version, along with a set of properties
that can be configured

VirtualSystem

VirtualSystemCollection

Zero or more

EulaSection

Specifies a license agreement for the software in the
package

VirtualSystem

VirtualSystemCollection

Zero or more

Specifies that the virtual machine needs to be initially
booted to install and configure the software

StartupSection VirtualSystemCollection Zero or One
Specifies how a virtual machine collection is powered on

DeploymentOptionSection Envelope Zero or One
Specifies a discrete set of intended resource requirements

OperatingSystemSection VirtualSystem Zero or One
Specifies the installed guest operating system of a virtual

machine

InstallSection VirtualSystem Zero or One

The following clauses describe the semantics of the core sections and provide some examples. The

sections are used in several places of an OVF envelope, the description of each section defines where it
may be used. See the OVF schema for a detailed specification of all attributes and elements.

Version 1.0.0d

23

759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

777

778
779

780
781
782
783

784

785
786
787
788

789
790
791

792
793
794
795
796

797
798
799

Open Virtualization Format Specification DSP0243

9.1 DiskSection

A DiskSection describes meta-information about virtual disks in the OVF package. Virtual disks and
their metadata are described outside the virtual hardware to facilitate sharing between virtual machines
within an OVF package.
<DiskSection>
<Info>Describes the set of virtual disks</Info>
<Disk ovf:diskld="vmdiskl" ovf:fileRef="filel" ovf:capacity="8589934592"
ovf:populatedSize="3549324972"
ovf:format="http://www.vmware.com/specifications/vmdk.html#sparse'>
</Disk>
<Disk ovf:diskld="vmdisk2" ovf:capacity="536870912"
ovf:format="http://www.vmware.com/specifications/vmdk.html#sparse'>
</Disk>
<Disk ovf:diskld="vmdisk3" ovf:capacity="${disk.size}"
ovf:capacityAllocationUnits="GigaBytes"
ovf:format="http://www.vmware.com/specifications/vmdk.html#sparse'>
</Disk>
</DiskSection>

DiskSection is a valid section at the outermost envelope level only.

Each virtual disk is represented by a Disk element that shall be given a identifier using the ovf:diskld
attribute, the identifier shall be unique within the DiskSection.

The capacity of a virtual disk shall be specified by the ovf:capacity attribute with an xs: long integer
value. The default unit of allocation shall be bytes. The optional string attribute
ovf:capacityAllocationUnits may be used to specify a particular unit of allocation. Values for
ovf:capacityAllocationUnits shall match the format for programmatic units defined in DSP0004.

The format URI (see clause 5.2) of a virtual disk shall be specified by the ovf:format attribute.

The ovf: fileRef attribute denotes the virtual disk content by identifying an existing Fi le element in
the References element, the Fi le element is identified by matching its ovf: id attribute value with the
ovT:fileRef attribute value. Omitting the ovf: Fi leRef attribute shall indicate an empty disk. In this
case, the disk shall be created and the entire disk content zeroed at installation time.

Different Disk elements shall not contain ovF:fi leRef attributes with identical values. Disk elements
shall be ordered such that they identify any Fi le elements in the same order as these are defined in the
References element.

For empty disks, rather than specifying a fixed virtual disk capacity, the capacity for an empty disk can be
given using an OVF property, for example ovf:capacity="${disk.size}". The OVF property shall
resolve to an xs: long integer value. See 9.5 for a description of OVF properties. The
ovf:capacityAllocationUnits attribute is useful when using OVF properties because a user may
be prompted and can then enter disk sizing information in e.g. gigabytes.

For non-empty disks, the actual used size of the disk can optionally be specified using the
ovf:populatedSize attribute. The unit of this attribute is always bytes. ovf:populatedSize is
allowed to be an estimate of used disk size but shall not be larger than ovf:capacity.

24 Version 1.0.0d

800
801
802
803
804
805

806

807

808
809
810
811
812
813

814

815
816

817

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

838

839
840

841
842

DSP0243 Open Virtualization Format Specification

OVF allows a disk image to be represented as a set of modified blocks in comparison to a parent image.
The use of parent disks can often significantly reduce the size of an OVF package, if it contains multiple
disks with similar content. For a Disk element, a parent disk can optionally be specified using the
ovT:parentRef attribute, which shall contain a valid ovf:diskld reference to a different Disk
element. If a disk block does not exist locally, lookup for that disk block then occurs in the parent disk. In
DiskSection, parent Disk elements shall occur before child Disk elements that refer to them.

9.2 NetworkSection

The NetworkSection element shall list all logical networks used in the OVF package.

<NetworkSection>
<Info>List of logical networks used in the package</Info>
<Network ovf:name="red">
<Description>The network the Red service will be available on</Description>
</Network>
</NetworkSection>

NetworkSection is a valid element at the outermost envelope level.

All networks referred to from Connection elements in all VirtualHardware elements shall be defined
in the NetworkSection.

9.3 ResourceAllocationSection

The ResourceAllocationSection element describes all resource allocation requirements of a
VirtualSystemCol lection entity. These resource allocations shall be performed when deploying the
OVF package.

<ResourceAllocationSection>
<Info>Defines reservations for CPU and memory for the collection of VMs</Info>
<ltem>
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>
<rasd:ElementName>300 MB reservation</rasd:ElementName>
<rasd: InstancelD>0</rasd: InstancelD>
<rasd:Reservation>300</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>
</ltem>
<ltem ovf:configuration="_.." ovf:bound="...">
<rasd:AllocationUnits>hertz * 1076</rasd:AllocationUnits>
<rasd:ElementName>500 MHz reservation</rasd:ElementName>
<rasd: InstancelD>0</rasd: InstancelD>
<rasd:Reservation>500</rasd:Reservation>
<rasd:ResourceType>3</rasd:ResourceType>
</ltem>
</ResourceAl locationSection>

ResourceAllocationSection is a valid element for a Virtual SystemCol lection entity.

The optional ovf:configuration attribute contains a list of configuration names. See 9.8 on
deployment options for semantics of this attribute.

The optional ovf:bound attribute contains a value of min, max, or normal. See 8.4 for semantics of this
attribute.

Version 1.0.0d 25

843

844
845

846
847
848
849

850
851

852

853

854
855

856
857
858
859
860
861
862
863
864
865

866
867

868
869
870
871

872
873

874
875
876
877
878
879
880

881

882
883
884
885
886

Open Virtualization Format Specification DSP0243

9.4 AnnotationSection

The AnnotationSection element is a user-defined annotation on an entity. Such annotations may be
displayed when deploying the OVF package.

<AnnotationSection>
<Info>An annotation on this service. It can be ignored</Info>
<Annotation>Contact customer support if you have any problems</Annotation>
</AnnotationSection >

AnnotationSection is a valid element for a VirtualSystem and a VirtualSystemCol lection
entity.

See clause 10 for details on how to localize the Annotation element.

9.5 ProductSection

The ProductSection element specifies product-information for an appliance, such as product name,
version, vendor, and so on.

<ProductSection ovf:class="com.mycrm.myservice" ovf:instance="1">
<Info>Describes product information for the service</Info>
<Product>MyCRM Enterprise</Product>
<Vendor>MyCRM Corporation</Vendor>
<Version>4_5</Version>
<FullVersion>4_.5-b4523</FullVersion>
<ProductUrlI>http://www.mycrm.com/enterprise</ProductUrl>
<VendorUrl>http://www.mycrm.com</VendorUrl>
<AppUrl>http://${app- ip}/</AppUrl>
<lcon ovf:height="32" ovf:width="32" ovf:mimeType="image/png" ovf:fileRef="icon">

<Category>Email properties</Category> <Property ovf:key="admin.email"
ovf:type="string” ovf:userConfigurable=""true">

<Label>Admin email</Label>

<Description>Email address of administrator</Description>
</Property>
<Category>Admin properties</Category>

<Property ovf:key="app.log"™ ovf:type="string” ovf:value=""low"
ovf:userConfigurable="true">

<Description>Loglevel for the service</Description>
</Property>

<Property ovf:key="app.ip" ovf:type="string" ovf:qualifiers="ip"
ovf:value="${appserver-vm}">

<Description>The IP address of the application server virtual
machine</Description>

</Property>
</ProductSection>

Property elements specify application-level customization parameters and are particularly relevant to
appliances that need to be customized during deployment with specific settings such as network identity,
the IP addresses of DNS servers, gateways, and others.

ProductSection is a valid section for a VirtualSystem and a VirtualSystemCollection entity.

26 Version 1.0.0d

887
888
889
890
891
892
893

894
895

896
897
898

899
900
901

902
903
904
905
906

907
908
909
910
911

912
913
914
915
916
917
918
919
920

921
922
923
924

925

926

927
928
929

930
931

DSP0243 Open Virtualization Format Specification

Property elements may be grouped by using Category elements. The set of Property elements
grouped by a Category element is the sequence of Property elements following the Category
element, until but not including an element that is not a Property element. For OVF packages
containing a large number of Property elements, this may provide a simpler installation experience.
Similarly, each Property element may have a short label defined by its Label child element in addition
to a description defined by its Description child element. See clause 10 for details on how to localize
the Category element and the Description and Label child elements of the Property element.

Each Property element in a ProductSection shall be given an identifier that is unique within the
ProductSection using the ovf:key attribute.

Each Property element in a ProductSection shall be given a type using the ovf:type attribute and
optionally type qualifiers using the ovf:qual i fiers attribute. Valid types are listed in Table 5 and valid
qualifiers are listed in Table 6.

The optional attribute ovf:value is used to provide a default value for a property. One or more optional
Value elements may be used to define alternative default values for specific configurations, as defined in
clause 9.8.

The optional attribute ovf:userConfigurable determines whether the property value is configurable
during the installation phase. If ovf:userConfigurable is FALSE or omitted, the ovf:value attribute
specifies the value to be used for that customization parameter during installation. If
ovf:userConfigurable is TRUE, the ovFf:value attribute specifies a default value for that
customization parameter, which may be changed during installation.

A simple OVF implementation such as a command-line installer typically uses default values for
properties and does not prompt even though ovf:userConfigurable is setto TRUE. To force
prompting at startup time, omitting the ovf:value attribute is sufficient for integer and IP types, because
the empty string is not a valid integer or IP value. For string types, prompting can be forced by using a
type for a non-empty string.

Zero or more ProductSections can be specified within a Virtual System or

VirtualSystemCol lection. Typically, a ProductSection corresponds to a particular software
product that is installed. Each product section at the same entity level shall have a unique ovf:class
and ovf: instance attribute pair. For the common case where only a single ProductSection is used,
the ovf:class and ovf: instance attributes are optional and default to the empty string. It is
recommended that the ovf:class property be used to uniquely identify the software product using the
reverse domain name convention. Examples of values are com.vmware.tools and
org.apache.tomcat. If multiple instances of the same product are installed, the ovf: instance
attribute is used to identify the different instances.

Property elements are exposed to the guest software through the OVF environment, as described in
clause 11. The value of the ovFfenv:key attribute of a Property element exposed in the OVF
environment shall be constructed from the value of the ovf:key attribute of the corresponding
Property element defined in a ProductSection entity of an OVF descriptor as follows:

key-value-env = [class-value ".""] key-value-prod ["." instance-value]

where:

e class-value is the value of the ovf:class attribute of the Property element defined in the

ProductSection entity. The production [class-value ' .'"] shall be present if and only if
class-value is not the empty string.

o key-value-prod is the value of the ovF:key attribute of the Property element defined in the
ProductSection entity.

Version 1.0.0d 27

932
933
934

935
936
937
938
939

940
941
942
943

944
945
946

947
948
949

950
951
952

953

954

955
956

957

Open Virtualization Format Specification DSP0243

° instance-value is the value of the ovf: instance attribute of the Property element defined in
the ProductSection entity. The production [""."" instance-value] shall be present if and only
if instance-value is not the empty string.

EXAMPLE: The following OVF environment example shows how properties can be propagated to the guest
software:
<Property ovf:key="com.vmware.tools.logLevel™ ovf:value=""none"/>
<Property ovf:key="org.apache.tomcat.logLevel 1" ovf:value="debug"/>
<Property ovf:key="org.apache.tomcat. logLevel 2" ovf:value="normal*/>

The consumer of an OVF package should prompt for properties where ovf:userConfigurable is
TRUE. These properties can be defined in multiple ProductSections as well as in sub-entities in the
OVF package.

The first ProductSection entity defined in the top-level Content element of a package shall define
summary information that describes the entire package. After installation, an OVF application could
choose to make this information available as an instance of the CIM_Product class.

Property elements specified on a VirtualSystemCol lection can also be seen by its immediate
children (see clause 11). Children can refer to the properties of a parent VirtualSystemCol lection
using macros on the form ${name} as value for the ovf:key attributes.

Table 5 lists the valid types for properties. These are a subset of CIM intrinsic types defined in DSP0004,
which also define the value space and format for each intrinsic type. Each Property element in a shall
specify a type using the ovf:type attribute.

Table 5 — Property types

Type Description

uints Unsigned 8-bit integer
sint8 Signed 8-bit integer
uintl6é Unsigned 16-bit integer
sintl6 Signed 16-bit integer
uint32 Unsigned 32-bit integer
sint32 Signed 32-bit integer
uint64 Unsigned 64-bit integer
sint64 Signed 64-bit integer
string String

boolean Boolean

real32 IEEE 4-byte floating point
real64 IEEE 8-byte floating point

Table 6 lists the supported CIM type qualifiers as defined in DSP0004. Each Property element in a may
specify type qualifiers using the ovf:qualifiers attribute.

28 Version 1.0.0d

958

979

980

981
982

984
985

986
987

988

DSP0243 Open Virtualization Format Specification

Table 6 — Property qualifiers

Type Description

string MinLen(min)
MaxLen(max)
ValueMap{...}

uint8 ValueMap{.-...-}

sint8

uintl6é

sintl6

uint32

sint32

uint64

sint64

The MinLen, MaxLen and ValueMap qualifiers take values as defined in DSP0004.

9.6 EulaSection

A EulaSection contains the legal terms for using its parent Content element. This license shall be
shown and accepted during deployment of an OVF package. Multiple EulaSections can be present in
an OVF. If unattended installations are allowed, all embedded license sections are implicitly accepted.

<EulaSection>
<Info>Licensing agreement</Info>
<License>

Lorem ipsum dolor sit amet, ligula suspendisse nulla pretium, rhoncus tempor placerat
fermentum, enim integer ad vestibulum volutpat. Nisl rhoncus turpis est, vel elit,
congue wisi enim nunc ultricies sit, magna tincidunt. Maecenas aliquam maecenas ligula
nostra, accumsan taciti. Sociis mauris in integer, a dolor netus non dui aliquet,
sagittis felis sodales, dolor sociis mauris, vel eu libero cras. Interdum at. Eget
habitasse elementum est, ipsum purus pede porttitor class, ut adipiscing, aliquet sed
auctor, imperdiet arcu per diam dapibus libero duis. Enim eros in vel, volutpat nec
pellentesque leo, scelerisque.

</License>
</EulaSection>

EulaSection is a valid section for a VirtualSystem and a VirtualSystemCol lection entity.

See clause 10 for details on how to localize the License element.

9.7 StartupSection

The StartupSection specifies how a virtual machine collection is powered on and off.

<StartupSection>

ovf:startAction="powerOn" ovf:waitingForGuest="true"
ovf:stopAction=""powerOff"/>

<ltem ovf:id=""teamA"™ ovf:order="0"/>

<ltem ovf:id="vm2" ovf:order="1" ovf:startDelay="0" ovf:stopDelay="20"
ovf:startAction="powerOn" ovf:stopAction="guestShutdown"/>

</StartupSection>

Version 1.0.0d 29

989
990
991
992
993
994
995
996
997

998
999

1000
1001
1002

1003
1004
1005
1006

1007

1008
1009

1010
1011
1012

1013
1014

1015
1016

1017
1018
1019

1020
1021

1022

1023
1024
1025
1026
1027

1028

Open Virtualization Format Specification DSP0243

Each Content element that is a direct child of a VirtualSystemCol lection may have a
corresponding I'tem element in the StartupSection entity of the VirtualSystemCol lection entity.
Note that 1'tem elements can correspond to both VirtualSystem and VirtualSystemCollection
entities. When a start or stop action is performed on a VirtualSystemCol lection entity, the
respective actions on the I'tem elements of its StartupSection entity are invoked in the specified
order. Whenever an 1'tem element corresponds to a (nested) Virtual SystemCol lection entity, the
actions on the I'tem elements of its StartupSection entity shall be invoked before the action on the
Item element corresponding to that Virtual SystemCol lection entity is invoked (i.e., depth-first
traversal).

The following required attributes on Item are supported for a Virtual System and
VirtualSystemCollection:

o ovf:id shall match the value of the ovF: id attribute of a Content element which is a direct
child of this Virtual SystemCol lection. That Content element describes the virtual
machine or virtual machine collection to which the actions defined in the I1tem element apply.

o ovf:order specifies the startup order using non-negative integer values. The order of
execution of the start action is the numerical ascending order of the values. I'tems with same
order identifier may be started up concurrently. The order of execution of the stop action is the
numerical descending order of the values.

The following optional attributes on 1tem are supported for a VirtualSystem.

e ovT:startDelay specifies a delay in seconds to wait until proceeding to the next order in the
start sequence. The default value is 0.

o ovf:waitingForGuest enables the platform to resume the startup sequence after the guest
software has reported it is ready. The interpretation of this is deployment platform specific. The
default value is FALSE.

o ovf:startAction specifies the start action to use. Valid values are powerOn and none. The
default value is poweroOn.

o ovf:stopDelay specifies a delay in seconds to wait until proceeding to the previous order in
the stop sequence. The default value is 0.

e ovf:stopAction specifies the stop action to use. Valid values are powerOff,
guestShutdown, and none. The interpretation of guestShutdown is deployment platform
specific. The default value is powerOfF.

If not specified, an implicit default 1tem is created for each entity in the collection with ovf:order="0".
Thus, for a trivial startup sequence no StartupSection needs to be specified.

9.8 DeploymentOptionSection

The DeploymentOptionSection specifies a discrete set of intended resource configurations. The
author of an OVF package can include sizing metadata for different configurations. A consumer of the
OVF shall select a configuration, for example, by prompting the user. The selected configuration will be
visible in the OVF environment, enabling guest software to adapt to the selected configuration. See
clause 11.

The DeploymentOptionSection specifies an ID, label, and description for each configuration.

30 Version 1.0.0d

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

1041
1042

1043
1044

1045
1046
1047

1048
1049

1050
1051
1052
1053

1054
1055
1056
1057

1058
1059
1060
1061
1062
1063
1064

1065
1066

1067

1068
1069
1070
1071

1072
1073

1074

DSP0243 Open Virtualization Format Specification

<DeploymentOptionSection>
<Configuration ovf:id="Minimal">
<Label>Minimal</Label>
<Description>Some description</Description>
</Configuration>
<Configuration ovf:id="Typical" ovf:default="true">
<Label>Typical</Label>
<Description>Some description</Description>
</Configuration>
<I-- Additional configurations -->
</DeploymentOptionSection>

The DeploymentOptionSection has the following semantics:

o If present, the DeploymentOptionSection is valid only at the envelope level, and only one
section can be specified in an OVF descriptor.

e The discrete set of configurations is described with Configuration elements, which shall
have identifiers specified by the ovFf: id attribute that are unique in the package.

o Adefault Configuration element can be specified with the optional ovf:default attribute.
If no default is specified, the first element in the list is the default. Specifying more than one
element as the default is invalid.

e The Label and Description elements are localizable using the ovf:msgid attribute. See
clause 10 for more details on internationalization support.

Configurations can be used to control resources for virtual hardware and for virtual machine collections.
Item elements in VirtualHardwareSection elements describe resources for VirtualSystem entities,
while I'tem elements in ResourceAl locationSection elements describe resources for virtual
machine collections. For these two 1tem types, the following additional semantics are defined:

Each I'tem has an optional ovf:configuration attribute, containing a list of configurations separated
by a single space character. If not specified, the item shall be selected for any configuration. If specified,
the item shall be selected only if the chosen configuration ID is in the list. A configuration attribute shall
not contain an ID that is not specified in the DeploymentOptionSection.

e Within a single VirtualHardwareSection or ResourceAl locationSection, multiple
I'tem elements are allowed to refer to the same InstancelD. A single combined 1tem for the
given InstancelD shall be constructed by picking up the child elements of each Item element,
with child elements of a former 1tem element in the OVF descriptor not being picked up if there
is a like-named child element in a latter 1tem element. Any attributes specified on child
elements of I'tem elements that are not picked up that way, are not part of the combined 1tem
element.

e All 1tem elements shall specify ResourceType, and I'tem elements with the same InstancelD
shall agree on ResourceType.

EXAMPLE: The following example shows a VirtualHardwareSection:

<VirtualHardwareSection>
<Info>...</Info>
<ltem>
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>

<rasd:ElementName>512 MB memory size and 256 MB
reservation</rasd:ElementName>

<rasd: InstancelD>0</rasd: InstancelD>

Version 1.0.0d 31

1075
1076
1077
1078
1079
1080
1081

1082
1083

1084
1085
1086
1087
1088
1089

1090
1091

1092
1093

1094
1095
1096
1097
1098
1099

1100

1101

1102
1103

1104
1105
1106
1107
1108

1109

1110

1111
1112
1113
1114

1115
1116

1117

Open Virtualization Format Specification DSP0243

<rasd:Reservation>256</rasd:Reservation>

<rasd:ResourceType>4</rasd:ResourceType>

<rasd:VirtualQuantity>512</rasd:VirtualQuantity>
</ltem>

<ltem ovf:configuration="big">
<rasd:AllocationUnits>byte * 2720</rasd:AllocationUnits>

<rasd:ElementName>1024 MB memory size and 512 MB
reservation</rasd:ElementName>

<rasd: InstancelD>0</rasd: InstancelD>
<rasd:Reservation>512</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>
<rasd:VirtualQuantity>1024</rasd:VirtualQuantity>
</ltem>
</VirtualHardwareSection>

Note that the attributes ovf:configuration and ovf:bound on Item can be used in combination to
provide very flexible configuration options.

Configurations can further be used to control default values for properties. For Property elements inside
a ProductSection, the following additional semantic is defined:

e |tis possible to use alternative default property values for different configurations in a
DeploymentOptionSection. In addition to a Label and Description element, each
Property element may optionally contain Value elements. The Value element shall have
an ovT:value attribute specifying the alternative default and an ovf:configuration
attribute specifying the configuration in which this new default value should be used. Multiple
Value elements shall not refer to the same configuration.

EXAMPLE: The following shows an example ProductSection

<ProductSection>

<Property ovf:key="app.log" ovf:type="string"” ovf:value="low"
ovf:userConfigurable="true">

<Label>Loglevel</Label>
<Description>Loglevel for the service</Description>
<Value ovf:value="none" ovf:configuration="minimal">
</Property>
</ProductSection>

9.9 OperatingSystemSection

An OperatingSystemSection specifies the operating system installed on a virtual machine.

<OperatingSystemSection ovf:id="76">
<Info>Specifies the operating system installed</Info>
<Description>Microsoft Windows Server 2008</Description>
</OperatingSystemSection>

The valid values for ovF: id are defined by the ValueMap qualifier in the
CIM_OperatingSystem.0OsType property.

OperatingSystemSection is a valid section for a Virtual System entity only.

32 Version 1.0.0d

1118

1119
1120
1121
1122

1123
1124

1125

1126
1127

1128
1129

1130

1131
1132
1133
1134

1135

1136
1137

1138

1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149

1150
1151

1152
1153

1154
1155

DSP0243 Open Virtualization Format Specification

9.10 InstallSection

The InstallSection, if specified, indicates that the virtual machine needs to be booted once in order
to install and/or configure the guest software. The guest software is expected to access the OVF
environment during that boot, and to shut down after having completed the installation and/or
configuration of the software, powering off the guest.

If the Instal ISection is not specified, this indicates that the virtual machine does not need to be
powered on to complete installation of guest software.

<InstallSection ovf:initialBootStopDelay="300">

<Info>Specifies that the virtual machine needs to be booted once after having
created the guest software in order to install and/or configure the software

</Info>
</InstallSection>

InstallSection is a valid section for a VirtualSystem entity only.

The optional ovf: initialBootStopDelay attribute specifies a delay in seconds to wait for the virtual
machine to power off. If not set, the implementation shall wait for the virtual machine to power off by itself.
If the delay expires and the virtual machine has not powered off, the OVF application shall indicate a
failure.

Note that the guest software in the virtual machine can do multiple reboots before powering off.

Several VMs in a virtual machine collection may have an Instal 1Section defined, in which case the
above step is done for each VM, potentially concurrently.

10 Internationalization

The following elements support localizable messages using the optional ovf:msgid attribute:
o Info element on Content
. Info element on Section
e Annotation element on AnnotationSection
e License element on EulaSection
e Description element on NetworkSection
e Description element on OperatingSystemSection
e Description, Product, Vendor, Label, and Category elements on ProductSection
e Description and Label elements on DeploymentOptionSection

e ElementName, Caption and Description subelements onthe System elementin
VirtualHardwareSection

e ElementName, Caption and Description subelements on Item elements in
VirtualHardwareSection

e ElementName, Caption and Description subelements on Item elements in
ResourceAl location

The ovFf:msgid attribute contains an identifier that refers to a message that can have different values in
different locales.

Version 1.0.0d 33

Open Virtualization Format Specification DSP0243

EXAMPLE 1:

<Info ovf:msgid="info.text"">Default info.text value if no locale is set or no locale
match</Info>

<License ovf:msgid="license.tomcat-6_0"/> <!-- No default message -->

The xml : lang attribute on the Envelope element specifies the default locale for messages in the
descriptor. If not specified, the locale defaults to the locale of the consumer of the OVF package.

Message resource bundles can be internal or external to the OVF descriptor. Internal resource bundles
are represented as Strings elements at the end of the Envelope element.
EXAMPLE 2:

<ovf:Envelope xml:lang=""en-US">
. sections and content here ...

<Info msgid="info.o0s">0perating System</Info>

;éirings xml : lang=""da-DA"">
<Msg ovf:msgid="info.os">0perativsystem</Msg>
</Strings>
<Strings xml:lang="de-DE">
<Msg ovf:msgid="info.os">Betriebssystem</Msg>
</Strings>
</ovf:Envelope>

External resource bundles shall be listed first in the References section and referred to from Strings
elements. An external message bundle follows the same schema as the embedded one.

EXAMPLE 3:

<ovf:Envelope xml:lang="en-US">
<References>

<File ovf:id="it-it-resources" ovf:href="resources/it-it-bundle._msg"/>
</References>
. sections and content here ...

<Strings xml:lang="it-1T" ovf:fileRef="it-it-resources'/>
</ovf:Envelope>

EXAMPLE 4: Example content of external resources/it-it-bundle.msg file, which is referenced in previous example:

<Strings
xmIns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
xmIns="http://schemas.dmtf.org/ovf/envelope/1"
xml: lang=""1t-1T">
<Msg ovf:msgid="info.os">Sistema operativo</Msg>

</Strings>

The embedded and external Strings elements can be interleaved, but they shall be placed at the end of
the Envelope element. If multiple occurrences of a msg:id attribute with a given locale occurs, a latter
value overwrites a former.

34 Version 1.0.0d

http://schemas.dmtf.org/ovf/envelope/1�

1204

1205
1206
1207

1208
1209
1210
1211

1212
1213

1214

1215
1216
1217

1218

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

1239
1240

1241
1242
1243

1244
1245
1246
1247
1248

DSP0243 Open Virtualization Format Specification

11 OVF Environment

The OVF environment defines how the guest software and the deployment platform interact. This
environment allows the guest software to access information about the deployment platform, such as the
user-specified values for the properties defined in the OVF descriptor.

The environment specification is split into a protocol part and a transport part. The protocol part defines
the format and semantics of an XML document that can be made accessible to the guest software. The
transport part defines how the information is communicated between the deployment platform and the
guest software.

The ovf-environment.xsd XML schema definition file for the OVF environment contains the elements
and attributes.

11.1 Environment Document

The environment document is an extensible XML document that is provided to the guest software about
the environment in which it is being executed. The way that the document is obtained depends on the
transport type.

EXAMPLE: An example of the structure of the OVF environment document follows:

<?xml version="1.0" encoding="UTF-8"7?>
<Environment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlIns:ovfenv="http://schemas.dmtf.org/ovf/environment/1"
xmIns="http://schemas.dmtf.org/ovf/environment/1"
ovfenv:id="identification of VM from OVF descriptor'>
<I-- Information about virtualization platform -->
<PlatformSection>
<Kind>Type of virtualization platform</Kind>
<Version>Version of virtualization platform</Version>
<Vendor>Vendor of virtualization platform</Vendor>
<Locale>Language and country code</Locale>
<TimeZone>Current timezone offset in minutes from UTC</TimeZone>
</PlatformSection>
<I-—- Properties defined for this virtual machine -->
<PropertySection>
<Property ovfenv:key="key" ovfenv:value="value'>
<I-- More properties -->
</PropertySection>
<Entity ovfenv:id="id of sibling virtual system or virtual machine collection">
<I-- More properties -->
</Entity>
</Environment>

The PlatformSection element contains optional information provided by the deployment platform.
Elements Kind, Version, and Vendor describe deployment platform vendor details. Elements Locale
and TimeZone describe the current locale and time zone.

The PropertySection element contains Property elements that correspond to those defined in the
OVF descriptor for the current virtual machine. The environment presents properties as a simple list to
make it easy for applications to parse. Furthermore, the single list format supports the override semantics
where a property on a VirtualSystem can override one defined on a parent

VirtualSystemCol lection. The overridden property will not be in the list.

Version 1.0.0d 35

1249
1250
1251
1252
1253

1254
1255
1256
1257
1258
1259

1260
1261

1262

1263
1264
1265
1266

1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277

1278
1279

1280
1281
1282

1283
1284
1285

1286
1287
1288
1289
1290
1291

Open Virtualization Format Specification DSP0243

The value of the ovfenv: id attribute of the Environment element shall match the value of the ovf: id
attribute of the VirtualSystem entity describing this virtual machine The Property section contains
the key/value pairs defined for all the properties specified in the OVF descriptor for the current virtual
machine, as well as properties specified for the immediate parent VirtualSystemCollection, if one
exists.

An Entity element shall exist for each sibling VirtualSystem and Virtual SystemCol lection, if
any are present. The value of the ovfenv: id attribute of the Entity element shall match the value of
the ovf: id attribute of the sibling entity. The Entity elements contain the property key/value pairs in
the siblings OVF environment documents. This information can be used, for example, to make
configuration information such as IP addresses available to VirtualSystems being part of a multi-tiered
application.

The environment document is extensible by providing new section types. A consumer of the document
should ignore unknown section types and elements.

11.2 Transport

The environment document information can be communicated in a number of ways to the guest software.
These ways are called transport types. The transport types are specified in the OVF descriptor by the
ovf:transport attribute of VirtualHardwareSection. Several transport types may be specified,
separated by a single space character, in which case an implementation is free to use any of them.

The transport types define methods by which the environment document is communicated from the
deployment platform to the guest software. Standardizing transport types does pose some challenges,
since no industry-standard cross-vendor para-virtualized device exists. Possible transports types includes
dynamically generated DVD images, dynamically generated floppy images, XenSource XenBus,
Microsoft VMBus, VMware VMCI, and so on.

To enable interoperability, OVF requires all implementations that support CD-ROM devices to support the
""1s0" transport type. This transport communicates the environment document by making a dynamically
generated ISO image available to the guest software. To support the 1so transport type, prior to booting
a virtual machine, an implementation shall make an 1ISO 9660 read-only disk image available as backing
for a disconnected CD-ROM. If the 1so transport is selected for a VirtualHardwareSection, at least
one disconnected CD-ROM device shall be present in this section.

Support for the ""iso0" transport type is not a requirement for virtual hardware architectures or guest
operating systems which do not have CD-ROM device support.

The ISO image shall contain the OVF environment for this particular virtual machine, and the environment
shall be present in an XML file named ovf-env.xml that is contained in the root directory of the ISO
image. The guest software can now access the information using standard guest operating system tools.

If the virtual machine prior to booting had more than one disconnected CD-ROM, the guest software may
have to scan connected CD-ROM devices in order to locate the 1ISO image containing the ovF-env.xml
file.

To be compliant with this specification, any transport format other than iso shall be given by a URI which
identifies an unencumbered specification on how to use the transport. The specification need not be
machine readable, but it shall be static and unique so that it may be used as a key by software reading an
OVF descriptor to uniquely determine the format. The specification shall be sufficient for a skilled person
to properly interpret the transport mechanism for implementing the protocols. It is recommended that
these URIs are resolvable.

36 Version 1.0.0d

1292
1293
1294
1295

1296
1297
1298
1299
1300
1301

1302
1303

1304
1305

1306
1307

1308
1309

1310

DSP0243 Open Virtualization Format Specification

ANNEX A
(informative)

Symbols and Conventions

XML examples use the XML namespace prefixes defined in Table 1. The XML examples use a style to
not specify namespace prefixes on child elements. Note that XML rules define that child elements
specified without namespace prefix are from the namespace of the parent element, and not from the
default namespace of the XML document.Throughout the document, whitespace within XML element
values is used for readability. In practice, a service can accept and strip leading and trailing whitespace
within element values as if whitespace had not been used.

Syntax definitions in Augmented BNF (ABNF) use ABNF as defined in IETF RFC 2234 with the following
exceptions:

e Rules separated by a bar (|) represent choices, instead of using a forward slash (/) as defined in
ABNF.

e Any characters must be processed case sensitively, instead of case-insensitively as defined in
ABNF.

e Whitespace (i.e. the space character U+0020 and the tab character U+0009) is allowed between
syntactical elements, instead of assembling elements without white space as defined in ABNF.

Version 1.0.0d 37

1311
1312
1313
1314

1315

DSP0243

Open Virtualization Format Specification
ANNEX B
(informative)
Change Log
Version | Date Description
1.0.0a | 2008-06-04 | Work in progress release
1.0.0b | 2008-07-23 | Preliminary release
Revised XML schemas to use substitution groups
1.0.0c | 2008-08-13 | Preliminary release
Errata
1.0.0d | 2008-08-18 | Preliminary release

38

Version 1.0.0d

DSP0243 Open Virtualization Format Specification

1316 ANNEX C
1317 (normative)
1318

1319 OVF XSD

1320 A normative copy of the XML schemas for this specification may be retrieved by resolving a URL which
1321 consists of the XML namespace URI for the XML schema, followed by
1322 "'/<dspnumber>_<dspversion>.xsd", e.g. ""/dsp8023 1.0.0.xsd".

1323 Any xs:documentation content in XML schemas for this specification is informative and provided only
1324 for convenience.

1325 Normative copies of the XML schemas for the WS-CIM mapping (DSP0230) of

1326 CIM_ResourceAl locationSystemSettingsData andCIM_VirtualSystemSettingData may be
1327 retrieved by resolving the following XML namespace URIs below. Note that **.xsd" has to be appended
1328 tothe URIs.

1329 xmIns:vssd="http://schemas.dmtf.org/wbem/wscim/1/cim-

1330 schema/2/CIM_VirtualSystemSettingData"

1331 xmIns:rasd="http://schemas.dmtf.org/wbem/wscim/1/cim-
1332 schema/2/CIM_ResourceAl locationSettingData"

1333 This specification is based on the following CIM MOFs:

1334 CIM_VirtualSystemSettingData.mof
1335 CIM_ResourceAllocationSettingData.mof
1336 CIM_OperatingSystem.mof

Version 1.0.0d 39

	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Symbols and Abbreviated Terms
	5 OVF Packages
	8 Virtual Hardware Description
	9 Core Metadata Sections
	10 Internationalization
	11 OVF Environment

