Editors: Filippo Bonchi, Barbara König

This special issue of Logical Methods in Computer Science contains selected papers presented at the 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017) held in Ljubljana, Slovenia, June 14-16, 2011.

Full Preface

Fibred semantics is the foundation of the model-instance pattern of software engineering. Software models can often be formalized as objects of presheaf topoi, i.e, categories of objects that can be represented as algebras as well as coalgebras, e.g., the category of directed graphs. Multimodeling requires to construct colimits of models, decomposition is given by pullback. Compositionality requires an exact interplay of these operations, i.e., diagrams must enjoy the Van Kampen property. However, checking the validity of the Van Kampen property algorithmically based on its definition is often impossible. In this paper we state a necessary and sufficient yet efficiently checkable condition for the Van Kampen property to hold in presheaf topoi. It is based on a uniqueness property of path-like structures within the defining congruence classes that make up the colimiting cocone of the models. We thus add to the statement "Being Van Kampen is a Universal Property" by Heindel and Soboci\'{n}ski the fact that the Van Kampen property reveals a presheaf-based structural uniqueness feature.

Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory.

The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be fully abstract, i.e. a subcoalgebra of the final coalgebra. Inspired by \'Esik and Maletti's notion of a proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata.

Convex algebras, also called (semi)convex sets, are at the heart of modelling probabilistic systems including probabilistic automata. Abstractly, they are the Eilenberg-Moore algebras of the finitely supported distribution monad. Concretely, they have been studied for decades within algebra and convex geometry. In this paper we study the problem of extending a convex algebra by a single point. Such extensions enable the modelling of termination in probabilistic systems. We provide a full description of all possible extensions for a particular class of convex algebras: For a fixed convex subset $D$ of a vector space satisfying additional technical condition, we consider the algebra of convex subsets of $D$. This class contains the convex algebras of convex subsets of distributions, modelling (nondeterministic) probabilistic automata. We also provide a full description of all possible extensions for the class of free convex algebras, modelling fully probabilistic systems. Finally, we show that there is a unique functorial extension, the so-called black-hole extension.

We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, […]

We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution.

In this paper we regard languages and their acceptors - such as deterministic or weighted automata, transducers, or monoids - as functors from input categories that specify the type of the languages and of the machines to categories that specify the type of outputs. Our results are as follows: A) We provide sufficient conditions on the output category so that minimization of the corresponding automata is guaranteed. B) We show how to lift adjunctions between the categories for output values to adjunctions between categories of automata. C) We show how this framework can be instantiated to unify several phenomena in automata theory, starting with determinization, minimization and syntactic algebras. We provide explanations of Choffrut's minimization algorithm for subsequential transducers and of Brzozowski's minimization algorithm in this setting.